axiomatic set theory
   HOME

TheInfoList



OR:

Set theory is the branch of
mathematical logic Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...
that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
– is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians
Richard Dedekind Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. H ...
and
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''
naive set theory Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It de ...
''. After the discovery of paradoxes within naive set theory (such as
Russell's paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician, Bertrand Russell, in 1901. Russell's paradox shows that every set theory that contains ...
,
Cantor's paradox In set theory, Cantor's paradox states that there is no set of all cardinalities. This is derived from the theorem that there is no greatest cardinal number. In informal terms, the paradox is that the collection of all possible "infinite sizes" i ...
and the Burali-Forti paradox), various
axiomatic system In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establishes ...
s were proposed in the early twentieth century, of which
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
(with or without the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
) is still the best-known and most studied. Set theory is commonly employed as a foundational system for the whole of mathematics, particularly in the form of Zermelo–Fraenkel set theory with the axiom of choice. Besides its foundational role, set theory also provides the framework to develop a mathematical theory of
infinity Infinity is something which is boundless, endless, or larger than any natural number. It is denoted by \infty, called the infinity symbol. From the time of the Ancient Greek mathematics, ancient Greeks, the Infinity (philosophy), philosophic ...
, and has various applications in
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
(such as in the theory of
relational algebra In database theory, relational algebra is a theory that uses algebraic structures for modeling data and defining queries on it with well founded semantics (computer science), semantics. The theory was introduced by Edgar F. Codd. The main applica ...
),
philosophy Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational an ...
, formal semantics, and evolutionary dynamics. Its foundational appeal, together with its
paradoxes A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictor ...
, and its implications for the concept of infinity and its multiple applications have made set theory an area of major interest for
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
ians and
philosophers of mathematics Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathem ...
. Contemporary research into set theory covers a vast array of topics, ranging from the structure of the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
line to the study of the
consistency In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences ...
of
large cardinal In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ...
s.


History


Early history

The basic notion of grouping objects has existed since at least the emergence of numbers, and the notion of treating sets as their own objects has existed since at least the
Tree of Porphyry In philosophy (particularly the theory of categories), the Porphyrian tree or Tree of Porphyry is a classic device for illustrating a "scale of being" (), attributed to the 3rd-century CE Greek neoplatonist philosopher and logician Porphyry, an ...
, 3rd-century AD. The simplicity and ubiquity of sets makes it hard to determine the origin of sets as now used in mathematics, however,
Bernard Bolzano Bernard Bolzano (, ; ; ; born Bernardus Placidus Johann Nepomuk Bolzano; 5 October 1781 – 18 December 1848) was a Bohemian mathematician, logician, philosopher, theologian and Catholic priest of Italian extraction, also known for his liberal ...
's ''
Paradoxes of the Infinite ''Paradoxes of the Infinite'' (German title: ''Paradoxien des Unendlichen'') is a mathematical work by Bernard Bolzano on the theory of sets. It was published by a friend and student, František Přihonský, in 1851, three years after Bolzano's d ...
'' (''Paradoxien des Unendlichen'', 1851) is generally considered the first rigorous introduction of sets to mathematics. In his work, he (among other things) expanded on
Galileo's paradox Galileo's paradox is a demonstration of one of the surprising properties of infinite sets. In his final scientific work, '' Two New Sciences'', Galileo Galilei made apparently contradictory statements about the positive integers. First, a square is ...
, and introduced
one-to-one correspondence In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivale ...
of infinite sets, for example between the intervals ,5/math> and ,12/math> by the relation 5y = 12x. However, he resisted saying these sets were
equinumerous In mathematics, two sets or classes ''A'' and ''B'' are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from ''A'' to ''B'' such that for every element ''y'' of ''B'', ...
, and his work is generally considered to have been uninfluential in mathematics of his time. Before mathematical set theory, basic concepts of
infinity Infinity is something which is boundless, endless, or larger than any natural number. It is denoted by \infty, called the infinity symbol. From the time of the Ancient Greek mathematics, ancient Greeks, the Infinity (philosophy), philosophic ...
were considered to be solidly in the domain of philosophy (see: ''
Infinity (philosophy) In philosophy and theology, infinity is explored in articles under headings such as the Absolute (philosophy), Absolute, God, and Zeno's paradoxes. In Greek philosophy, for example in Anaximander, 'the Boundless' is the origin of all that is. He ...
'' and '). Since the 5th century BC, beginning with Greek philosopher
Zeno of Elea Zeno of Elea (; ; ) was a pre-Socratic Greek philosopher from Elea, in Southern Italy (Magna Graecia). He was a student of Parmenides and one of the Eleatics. Zeno defended his instructor's belief in monism, the idea that only one single en ...
in the West (and early
Indian mathematicians Indian mathematicians have made a number of contributions to mathematics that have significantly influenced scientists and mathematicians in the modern era. One of such works is Hindu numeral system which is predominantly used today and is likely ...
in the East), mathematicians had struggled with the concept of infinity. With the development of calculus in the late 17th century, philosophers began to generally distinguish between actual and potential infinity, wherein mathematics was only considered in the latter.
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
famously stated: "Infinity is nothing more than a figure of speech which helps us talk about limits. The notion of a completed infinity doesn't belong in mathematics." Development of mathematical set theory was motivated by several mathematicians.
Bernhard Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ...
's lecture ''On the Hypotheses which lie at the Foundations of Geometry'' (1854) proposed new ideas about
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, and about basing mathematics (especially geometry) in terms of sets or
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s in the sense of a
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
(which he called ''Mannigfaltigkeit'') now called
point-set topology In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differ ...
. The lecture was published by
Richard Dedekind Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. H ...
in 1868, along with Riemann's paper on
trigonometric series In mathematics, trigonometric series are a special class of orthogonal series of the form : A_0 + \sum_^\infty A_n \cos + B_n \sin, where x is the variable and \ and \ are coefficients. It is an infinite version of a trigonometric polynom ...
(which presented the
Riemann integral In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Gö ...
), The latter was a starting point a movement in
real analysis In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include co ...
for the study of “seriously”
discontinuous function In mathematics, a continuous function is a function (mathematics), function such that a small variation of the argument of a function, argument induces a small variation of the Value (mathematics), value of the function. This implies there are no ...
s. A young
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
entered into this area, which led him to the study of point-sets. Around 1871, influenced by Riemann, Dedekind began working with sets in his publications, which dealt very clearly and precisely with equivalence relations, partitions of sets, and homomorphisms. Thus, many of the usual set-theoretic procedures of twentieth-century mathematics go back to his work. However, he did not publish a formal explanation of his set theory until 1888.


Naive set theory

Set theory, as understood by modern mathematicians, is generally considered to be founded by a single paper in 1874 by
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
titled '' On a Property of the Collection of All Real Algebraic Numbers''. In his paper, he developed the notion of
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
, comparing the sizes of two sets by setting them in one-to-one correspondence. His "revolutionary discovery" was that the set of all
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s is
uncountable In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger tha ...
, that is, one cannot put all real numbers in a list. This theorem is proved using
Cantor's first uncountability proof Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is unco ...
, which differs from the more familiar proof using his
diagonal argument Diagonal argument can refer to: * Diagonal argument (proof technique), proof techniques used in mathematics. A diagonal argument, in mathematics, is a technique employed in the proofs of the following theorems: *Cantor's diagonal argument (the ea ...
. Cantor introduced fundamental constructions in set theory, such as the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
of a set ''A'', which is the set of all possible
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s of ''A''. He later proved that the size of the power set of ''A'' is strictly larger than the size of ''A'', even when ''A'' is an infinite set; this result soon became known as
Cantor's theorem In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any Set (mathematics), set A, the set of all subsets of A, known as the power set of A, has a strictly greater cardinality than A itself. For finite s ...
. Cantor developed a theory of transfinite numbers, called cardinals and ordinals, which extended the arithmetic of the natural numbers. His notation for the cardinal numbers was the Hebrew letter \aleph ( ,
aleph Aleph (or alef or alif, transliterated ʾ) is the first Letter (alphabet), letter of the Semitic abjads, including Phoenician alphabet, Phoenician ''ʾālep'' 𐤀, Hebrew alphabet, Hebrew ''ʾālef'' , Aramaic alphabet, Aramaic ''ʾālap'' � ...
) with a natural number subscript; for the ordinals he employed the Greek letter \omega (,
omega Omega (, ; uppercase Ω, lowercase ω; Ancient Greek ὦ, later ὦ μέγα, Modern Greek ωμέγα) is the twenty-fourth and last letter in the Greek alphabet. In the Greek numerals, Greek numeric system/isopsephy (gematria), it has a value ...
). Set theory was beginning to become an essential ingredient of the new “modern” approach to mathematics. Originally, Cantor's theory of transfinite numbers was regarded as counter-intuitive – even shocking. This caused it to encounter resistance from mathematical contemporaries such as
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, abstract algebra and logic, and criticized Georg Cantor's work on set theory. Heinrich Weber quoted Kronecker as having said, ...
and
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
and later from
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
and L. E. J. Brouwer, while
Ludwig Wittgenstein Ludwig Josef Johann Wittgenstein ( ; ; 26 April 1889 – 29 April 1951) was an Austrian philosopher who worked primarily in logic, the philosophy of mathematics, the philosophy of mind, and the philosophy of language. From 1929 to 1947, Witt ...
raised philosophical objections (see: ''
Controversy over Cantor's theory In mathematical logic, the theory of infinite sets was first developed by Georg Cantor. Although this work has become a thoroughly standard fixture of classical set theory, it has been criticized in several areas by mathematicians and philosophers ...
''). Dedekind's algebraic style only began to find followers in the 1890s Despite the controversy, Cantor's set theory gained remarkable ground around the turn of the 20th century with the work of several notable mathematicians and philosophers. Richard Dedekind, around the same time, began working with sets in his publications, and famously constructing the real numbers using Dedekind cuts. He also worked with
Giuseppe Peano Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much Mathematical notati ...
in developing the
Peano axioms In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
, which formalized natural-number arithmetic, using set-theoretic ideas, which also introduced the
epsilon Epsilon (, ; uppercase , lowercase or ; ) is the fifth letter of the Greek alphabet, corresponding phonetically to a mid front unrounded vowel or . In the system of Greek numerals it also has the value five. It was derived from the Phoenic ...
symbol for
set membership In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called containing the first four positive integers (A = \), one could say that "3 is an element of ", expressed ...
. Possibly most prominently,
Gottlob Frege Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philos ...
began to develop his '' Foundations of Arithmetic''. In his work, Frege tries to ground all mathematics in terms of logical axioms using Cantor's cardinality. For example, the sentence "the number of horses in the barn is four" means that four objects fall under the concept ''horse in the barn''. Frege attempted to explain our grasp of numbers through cardinality ('the number of...', or Nx: Fx ), relying on
Hume's principle Hume's principle or HP says that, given two collections of objects \mathcal F and \mathcal G with properties F and G respectively, the number of objects with property F is equal to the number of objects with property G if and only if there is a ...
. However, Frege's work was short-lived, as it was found by
Bertrand Russell Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British philosopher, logician, mathematician, and public intellectual. He had influence on mathematics, logic, set theory, and various areas of analytic ...
that his axioms lead to a
contradiction In traditional logic, a contradiction involves a proposition conflicting either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's ...
. Specifically, Frege's Basic Law V (now known as the axiom schema of unrestricted comprehension). According to Basic Law V, for any sufficiently well-defined
property Property is a system of rights that gives people legal control of valuable things, and also refers to the valuable things themselves. Depending on the nature of the property, an owner of property may have the right to consume, alter, share, re ...
, there is the set of all and only the objects that have that property. The contradiction, called
Russell's paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician, Bertrand Russell, in 1901. Russell's paradox shows that every set theory that contains ...
, is shown as follows: Let ''R'' be the set of all sets that are not members of themselves. (This set is sometimes called "the Russell set".) If ''R'' is not a member of itself, then its definition entails that it is a member of itself; yet, if it is a member of itself, then it is not a member of itself, since it is the set of all sets that are not members of themselves. The resulting contradiction is Russell's paradox. In symbols: : \text R = \ \text R \in R \iff R \not \in R This came around a time of several
paradox A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictor ...
es or counter-intuitive results. For example, that the
parallel postulate In geometry, the parallel postulate is the fifth postulate in Euclid's ''Elements'' and a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: If a line segment intersects two straight lines forming two interior ...
cannot be proved, the existence of
mathematical object A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
s that cannot be computed or explicitly described, and the existence of theorems of arithmetic that cannot be proved with
Peano arithmetic In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
. The result was a
foundational crisis of mathematics Foundations of mathematics are the logical and mathematical framework that allows the development of mathematics without generating self-contradictory theories, and to have reliable concepts of theorems, proofs, algorithms, etc. in particul ...
.


Basic concepts and notation

Set theory begins with a fundamental
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
between an object and a set . If is a ''
member Member may refer to: * Military jury, referred to as "Members" in military jargon * Element (mathematics), an object that belongs to a mathematical set * In object-oriented programming, a member of a class ** Field (computer science), entries in ...
'' (or ''element'') of , the notation is used. A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces . Since sets are objects, the membership relation can relate sets as well, i.e., sets themselves can be members of other sets. A derived binary relation between two sets is the subset relation, also called ''set inclusion''. If all the members of set are also members of set , then is a ''
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
'' of , denoted . For example, is a subset of , and so is but is not. As implied by this definition, a set is a subset of itself. For cases where this possibility is unsuitable or would make sense to be rejected, the term ''
proper subset In mathematics, a set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset ...
'' is defined, variously denoted A\subset B, A\subsetneq B, or A\subsetneqq B (note however that the notation A\subset B is sometimes used synonymously with A\subseteq B; that is, allowing the possibility that and are equal). We call a ''proper subset'' of if and only if is a subset of , but is not equal to . Also, 1, 2, and 3 are members (elements) of the set , but are not subsets of it; and in turn, the subsets, such as , are not members of the set . More complicated relations can exist; for example, the set is both a member and a proper subset of the set . Just as
arithmetic Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. ...
features
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation ...
s on
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
s, set theory features binary operations on sets. The following is a partial list of them: *'' Union'' of the sets and , denoted , is the set of all objects that are a member of , or , or both. For example, the union of and is the set . *''
Intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
'' of the sets and , denoted , is the set of all objects that are members of both and . For example, the intersection of and is the set . *''
Set difference In set theory, the complement of a set , often denoted by A^c (or ), is the set of elements not in . When all elements in the universe, i.e. all elements under consideration, are considered to be members of a given set , the absolute complement ...
'' of and , denoted , is the set of all members of that are not members of . The set difference is , while conversely, the set difference is . When is a subset of , the set difference is also called the '' complement'' of in . In this case, if the choice of is clear from the context, the notation is sometimes used instead of , particularly if is a universal set as in the study of
Venn diagram A Venn diagram is a widely used diagram style that shows the logical relation between set (mathematics), sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple ...
s. *''
Symmetric difference In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and ...
'' of sets and , denoted or , is the set of all objects that are a member of exactly one of and (elements which are in one of the sets, but not in both). For instance, for the sets and , the symmetric difference set is . It is the set difference of the union and the intersection, or . *''
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
'' of and , denoted , is the set whose members are all possible
ordered pair In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unord ...
s , where is a member of and is a member of . For example, the Cartesian product of and is Some basic sets of central importance are the set of
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s, the set of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s and the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
– the unique set containing no elements. The empty set is also occasionally called the ''null set'', though this name is ambiguous and can lead to several interpretations. The empty set can be denoted with empty braces " \ " or the symbol " \varnothing " or " \emptyset ". The
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
of a set , denoted \mathcal(A), is the set whose members are all of the possible subsets of . For example, the power set of is . Notably, \mathcal(A) contains both and the empty set.


Ontology

A set is pure if all of its members are sets, all members of its members are sets, and so on. For example, the set containing only the empty set is a nonempty pure set. In modern set theory, it is common to restrict attention to the ''
von Neumann universe In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by ''V'', is the class of hereditary well-founded sets. This collection, which is formalized by Zermelo–Fraenkel set theory ( ...
'' of pure sets, and many systems of axiomatic set theory are designed to axiomatize the pure sets only. There are many technical advantages to this restriction, and little generality is lost, because essentially all mathematical concepts can be modeled by pure sets. Sets in the von Neumann universe are organized into a cumulative hierarchy, based on how deeply their members, members of members, etc. are nested. Each set in this hierarchy is assigned (by
transfinite recursion Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for a ...
) an
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
\alpha, known as its ''rank.'' The rank of a pure set X is defined to be the least ordinal that is strictly greater than the rank of any of its elements. For example, the empty set is assigned rank 0, while the set containing only the empty set is assigned rank 1. For each ordinal \alpha, the set V_ is defined to consist of all pure sets with rank less than \alpha. The entire von Neumann universe is denoted V.


Formalized set theory

Elementary set theory can be studied informally and intuitively, and so can be taught in primary schools using
Venn diagram A Venn diagram is a widely used diagram style that shows the logical relation between set (mathematics), sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple ...
s. The intuitive approach tacitly assumes that a set may be formed from the class of all objects satisfying any particular defining condition. This assumption gives rise to paradoxes, the simplest and best known of which are
Russell's paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician, Bertrand Russell, in 1901. Russell's paradox shows that every set theory that contains ...
and the Burali-Forti paradox. Axiomatic set theory was originally devised to rid set theory of such paradoxes. The most widely studied systems of axiomatic set theory imply that all sets form a cumulative hierarchy. Such systems come in two flavors, those whose
ontology Ontology is the philosophical study of existence, being. It is traditionally understood as the subdiscipline of metaphysics focused on the most general features of reality. As one of the most fundamental concepts, being encompasses all of realit ...
consists of: *''Sets alone''. This includes the most common axiomatic set theory, Zermelo–Fraenkel set theory with the axiom of choice (ZFC). Fragments of ZFC include: **
Zermelo set theory Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It be ...
, which replaces the
axiom schema of replacement In set theory, the axiom schema of replacement is a Axiom schema, schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image (mathematics), image of any Set (mathematics), set under any definable functional predicate, mappi ...
with that of separation; **
General set theory General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms. ...
, a small fragment of Zermelo set theory sufficient for the
Peano axioms In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
and
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
s; **
Kripke–Platek set theory The Kripke–Platek set theory (KP), pronounced , is an axiomatic set theory developed by Saul Kripke and Richard Platek. The theory can be thought of as roughly the predicative part of Zermelo–Fraenkel set theory (ZFC) and is considerably weak ...
, which omits the axioms of infinity,
powerset In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
, and choice, and weakens the axiom schemata of separation and replacement. *''Sets and
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
es''. These include
Von Neumann–Bernays–Gödel set theory In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collec ...
, which has the same
strength Strength may refer to: Personal trait *Physical strength, as in people or animals *Character strengths like those listed in the Values in Action Inventory *The exercise of willpower Physics * Mechanical strength, the ability to withstand ...
as ZFC for theorems about sets alone, and Morse–Kelley set theory and Tarski–Grothendieck set theory, both of which are stronger than ZFC. The above systems can be modified to allow '' urelements'', objects that can be members of sets but that are not themselves sets and do not have any members. The ''
New Foundations In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of ''Principia Mathematica''. Definition The well-formed fo ...
'' systems of NFU (allowing urelements) and NF (lacking them), associate with
Willard Van Orman Quine Willard Van Orman Quine ( ; known to his friends as "Van"; June 25, 1908 – December 25, 2000) was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century" ...
, are not based on a cumulative hierarchy. NF and NFU include a "set of everything", relative to which every set has a complement. In these systems urelements matter, because NF, but not NFU, produces sets for which the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
does not hold. Despite NF's ontology not reflecting the traditional cumulative hierarchy and violating well-foundedness, Thomas Forster has argued that it does reflect an iterative conception of set. Systems of
constructive set theory Constructivism may refer to: Art and architecture * Constructivism (art), an early 20th-century artistic movement that extols art as a practice for social purposes * Constructivist architecture, an architectural movement in the Soviet Union in ...
, such as CST, CZF, and IZF, embed their set axioms in
intuitionistic In the philosophy of mathematics, intuitionism, or neointuitionism (opposed to preintuitionism), is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of f ...
instead of
classical logic Classical logic (or standard logic) or Frege–Russell logic is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this c ...
. Yet other systems accept classical logic but feature a nonstandard membership relation. These include rough set theory and
fuzzy set theory Fuzzy or Fuzzies may refer to: Music * Fuzzy (band), a 1990s Boston indie pop band * Fuzzy (composer), Danish composer Jens Vilhelm Pedersen (born 1939) * ''Fuzzy'' (album), 1993 debut album of American rock band Grant Lee Buffalo * "Fuzzy", a ...
, in which the value of an
atomic formula In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformu ...
embodying the membership relation is not simply True or False. The
Boolean-valued model In mathematical logic, a Boolean-valued model is a generalization of the ordinary Tarskian notion of structure from model theory. In a Boolean-valued model, the truth values of propositions are not limited to "true" and "false", but instead take v ...
s of ZFC are a related subject. An enrichment of ZFC called
internal set theory Internal set theory (IST) is a mathematical theory of sets developed by Edward Nelson that provides an axiomatic basis for a portion of the nonstandard analysis introduced by Abraham Robinson. Instead of adding new elements to the real numbers, N ...
was proposed by
Edward Nelson Edward Nelson (May 4, 1932 – September 10, 2014) was an American mathematician. He was professor in the Mathematics Department at Princeton University. He was known for his work on mathematical physics and mathematical logic. In mathematical l ...
in 1977.


Applications

Many mathematical concepts can be defined precisely using only set theoretic concepts. For example, mathematical structures as diverse as
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discret ...
s,
manifolds In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
, rings,
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s, and
relational algebra In database theory, relational algebra is a theory that uses algebraic structures for modeling data and defining queries on it with well founded semantics (computer science), semantics. The theory was introduced by Edgar F. Codd. The main applica ...
s can all be defined as sets satisfying various (axiomatic) properties. Equivalence and
order relation Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intro ...
s are ubiquitous in mathematics, and the theory of mathematical relations can be described in set theory. Set theory is also a promising foundational system for much of mathematics. Since the publication of the first volume of ''
Principia Mathematica The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by the mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1 ...
'', it has been claimed that most (or even all) mathematical theorems can be derived using an aptly designed set of axioms for set theory, augmented with many definitions, using first or
second-order logic In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies on ...
. For example, properties of the
natural Nature is an inherent character or constitution, particularly of the ecosphere or the universe as a whole. In this general sense nature refers to the laws, elements and phenomena of the physical world, including life. Although humans are part ...
and
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s can be derived within set theory, as each of these number systems can be defined by representing their elements as sets of specific forms. Set theory as a foundation for
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
,
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
,
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, and
discrete mathematics Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous f ...
is likewise uncontroversial; mathematicians accept (in principle) that theorems in these areas can be derived from the relevant definitions and the axioms of set theory. However, it remains that few full derivations of complex mathematical theorems from set theory have been formally verified, since such formal derivations are often much longer than the natural language proofs mathematicians commonly present. One verification project,
Metamath Metamath is a formal language and an associated computer program (a proof assistant) for archiving and verifying mathematical proofs. Several databases of proved theorems have been developed using Metamath covering standard results in logic, set ...
, includes human-written, computer-verified derivations of more than 12,000 theorems starting from ZFC set theory,
first-order logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over ...
and
propositional logic The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contra ...
.


Areas of study

Set theory is a major area of research in mathematics with many interrelated subfields:


Combinatorial set theory

''Combinatorial set theory'' concerns extensions of finite
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
to infinite sets. This includes the study of
cardinal arithmetic In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case ...
and the study of extensions of Ramsey's theorem such as the Erdős–Rado theorem.


Descriptive set theory

''Descriptive set theory'' is the study of subsets of the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
and, more generally, subsets of
Polish space In the mathematical discipline of general topology, a Polish space is a separable space, separable Completely metrizable space, completely metrizable topological space; that is, a space homeomorphic to a Complete space, complete metric space that h ...
s. It begins with the study of
pointclass In the mathematical field of descriptive set theory, a pointclass is a collection of Set (mathematics), sets of point (mathematics), points, where a ''point'' is ordinarily understood to be an element of some perfect set, perfect Polish space. In ...
es in the
Borel hierarchy In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number call ...
and extends to the study of more complex hierarchies such as the projective hierarchy and the
Wadge hierarchy In descriptive set theory, within mathematics, Wadge degrees are levels of complexity for sets of reals. Sets are compared by continuous reductions. The Wadge hierarchy is the structure of Wadge degrees. These concepts are named after William W. W ...
. Many properties of
Borel set In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets ...
s can be established in ZFC, but proving these properties hold for more complicated sets requires additional axioms related to determinacy and large cardinals. The field of
effective descriptive set theory Effective descriptive set theory is the branch of descriptive set theory dealing with sets of reals having lightface definitions; that is, definitions that do not require an arbitrary real parameter (Moschovakis 1980). Thus effective descriptive ...
is between set theory and
recursion theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since ex ...
. It includes the study of lightface pointclasses, and is closely related to
hyperarithmetical theory In computability theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an im ...
. In many cases, results of classical descriptive set theory have effective versions; in some cases, new results are obtained by proving the effective version first and then extending ("relativizing") it to make it more broadly applicable. A recent area of research concerns Borel equivalence relations and more complicated definable
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
s. This has important applications to the study of invariants in many fields of mathematics.


Fuzzy set theory

In set theory as Cantor defined and Zermelo and Fraenkel axiomatized, an object is either a member of a set or not. In ''
fuzzy set theory Fuzzy or Fuzzies may refer to: Music * Fuzzy (band), a 1990s Boston indie pop band * Fuzzy (composer), Danish composer Jens Vilhelm Pedersen (born 1939) * ''Fuzzy'' (album), 1993 debut album of American rock band Grant Lee Buffalo * "Fuzzy", a ...
'' this condition was relaxed by Lotfi A. Zadeh so an object has a ''degree of membership'' in a set, a number between 0 and 1. For example, the degree of membership of a person in the set of "tall people" is more flexible than a simple yes or no answer and can be a real number such as 0.75.


Inner model theory

An ''inner model'' of Zermelo–Fraenkel set theory (ZF) is a transitive
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
that includes all the ordinals and satisfies all the axioms of ZF. The canonical example is the
constructible universe In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by L, is a particular Class (set theory), class of Set (mathematics), sets that can be described entirely in terms of simpler sets. L is the un ...
''L'' developed by Gödel. One reason that the study of inner models is of interest is that it can be used to prove consistency results. For example, it can be shown that regardless of whether a model ''V'' of ZF satisfies the
continuum hypothesis In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this ...
or the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
, the inner model ''L'' constructed inside the original model will satisfy both the generalized continuum hypothesis and the axiom of choice. Thus the assumption that ZF is consistent (has at least one model) implies that ZF together with these two principles is consistent. The study of inner models is common in the study of
determinacy Determinacy is a subfield of game theory and set theory that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "dete ...
and
large cardinal In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ...
s, especially when considering axioms such as the axiom of determinacy that contradict the axiom of choice. Even if a fixed model of set theory satisfies the axiom of choice, it is possible for an inner model to fail to satisfy the axiom of choice. For example, the existence of sufficiently large cardinals implies that there is an inner model satisfying the axiom of determinacy (and thus not satisfying the axiom of choice).


Large cardinals

A ''large cardinal'' is a cardinal number with an extra property. Many such properties are studied, including
inaccessible cardinal In set theory, a cardinal number is a strongly inaccessible cardinal if it is uncountable, regular, and a strong limit cardinal. A cardinal is a weakly inaccessible cardinal if it is uncountable, regular, and a weak limit cardinal. Since abou ...
s,
measurable cardinal In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure (mathematics), measure on a cardinal ''κ'', or more generally on any set. For a cardinal ''κ'', ...
s, and many more. These properties typically imply the cardinal number must be very large, with the existence of a cardinal with the specified property unprovable in
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
.


Determinacy

''Determinacy'' refers to the fact that, under appropriate assumptions, certain two-player games of perfect information are determined from the start in the sense that one player must have a winning strategy. The existence of these strategies has important consequences in descriptive set theory, as the assumption that a broader class of games is determined often implies that a broader class of sets will have a topological property. The
axiom of determinacy In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game o ...
(AD) is an important object of study; although incompatible with the axiom of choice, AD implies that all subsets of the real line are well behaved (in particular, measurable and with the perfect set property). AD can be used to prove that the Wadge degrees have an elegant structure.


Forcing

Paul Cohen Paul Joseph Cohen (April 2, 1934 – March 23, 2007) was an American mathematician, best known for his proofs that the continuum hypothesis and the axiom of choice are independent from Zermelo–Fraenkel set theory, for which he was awarded a F ...
invented the method of '' forcing'' while searching for a
model A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided in ...
of ZFC in which the
continuum hypothesis In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this ...
fails, or a model of ZF in which the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
fails. Forcing adjoins to some given model of set theory additional sets in order to create a larger model with properties determined (i.e. "forced") by the construction and the original model. For example, Cohen's construction adjoins additional subsets of the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s without changing any of the
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
s of the original model. Forcing is also one of two methods for proving
relative consistency In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences o ...
by finitistic methods, the other method being
Boolean-valued model In mathematical logic, a Boolean-valued model is a generalization of the ordinary Tarskian notion of structure from model theory. In a Boolean-valued model, the truth values of propositions are not limited to "true" and "false", but instead take v ...
s.


Cardinal invariants

A ''cardinal invariant'' is a property of the real line measured by a cardinal number. For example, a well-studied invariant is the smallest cardinality of a collection of
meagre set In the mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itse ...
s of reals whose union is the entire real line. These are invariants in the sense that any two isomorphic models of set theory must give the same cardinal for each invariant. Many cardinal invariants have been studied, and the relationships between them are often complex and related to axioms of set theory.


Set-theoretic topology

''Set-theoretic topology'' studies questions of
general topology In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differ ...
that are set-theoretic in nature or that require advanced methods of set theory for their solution. Many of these theorems are independent of ZFC, requiring stronger axioms for their proof. A famous problem is the normal Moore space question, a question in general topology that was the subject of intense research. The answer to the normal Moore space question was eventually proved to be independent of ZFC.


Controversy

From set theory's inception, some mathematicians have objected to it as a foundation for mathematics. The most common objection to set theory, one Kronecker voiced in set theory's earliest years, starts from the constructivist view that mathematics is loosely related to computation. If this view is granted, then the treatment of infinite sets, both in naive and in axiomatic set theory, introduces into mathematics methods and objects that are not computable even in principle. The feasibility of constructivism as a substitute foundation for mathematics was greatly increased by Errett Bishop's influential book ''Foundations of Constructive Analysis''. A different objection put forth by
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
is that defining sets using the axiom schemas of
specification A specification often refers to a set of documented requirements to be satisfied by a material, design, product, or service. A specification is often a type of technical standard. There are different types of technical or engineering specificati ...
and replacement, as well as the
axiom of power set In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. It guarantees for every set x the existence of a set \mathcal(x), the power set of x, consisting precisely of the subsets of x. By the axio ...
, introduces
impredicativity In mathematics, logic and philosophy of mathematics, something that is impredicative is a self-referencing definition. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more com ...
, a type of circularity, into the definitions of mathematical objects. The scope of predicatively founded mathematics, while less than that of the commonly accepted Zermelo–Fraenkel theory, is much greater than that of constructive mathematics, to the point that
Solomon Feferman Solomon Feferman (December 13, 1928July 26, 2016) was an American philosopher and mathematician who worked in mathematical logic. In addition to his prolific technical work in proof theory, computability theory, and set theory, he was known for h ...
has said that "all of scientifically applicable analysis can be developed sing predicative methods.
Ludwig Wittgenstein Ludwig Josef Johann Wittgenstein ( ; ; 26 April 1889 – 29 April 1951) was an Austrian philosopher who worked primarily in logic, the philosophy of mathematics, the philosophy of mind, and the philosophy of language. From 1929 to 1947, Witt ...
condemned set theory philosophically for its connotations of
mathematical platonism Mathematical Platonism is the form of realism that suggests that mathematical entities are abstract, have no spatiotemporal or causal properties, and are eternal and unchanging. This is often claimed to be the view most people have of numbers. ...
. He wrote that "set theory is wrong", since it builds on the "nonsense" of fictitious symbolism, has "pernicious idioms", and that it is nonsensical to talk about "all numbers". Wittgenstein identified mathematics with algorithmic human deduction; the need for a secure foundation for mathematics seemed, to him, nonsensical. Moreover, since human effort is necessarily finite, Wittgenstein's philosophy required an ontological commitment to radical constructivism and
finitism Finitism is a philosophy of mathematics that accepts the existence only of finite set, finite mathematical objects. It is best understood in comparison to the mainstream philosophy of mathematics where infinite mathematical objects (e.g., infinite ...
. Meta-mathematical statements – which, for Wittgenstein, included any statement quantifying over infinite domains, and thus almost all modern set theory – are not mathematics. Few modern philosophers have adopted Wittgenstein's views after a spectacular blunder in '' Remarks on the Foundations of Mathematics'': Wittgenstein attempted to refute
Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the phi ...
after having only read the abstract. As reviewers Kreisel, Bernays, Dummett, and Goodstein all pointed out, many of his critiques did not apply to the paper in full. Only recently have philosophers such as Crispin Wright begun to rehabilitate Wittgenstein's arguments. Category theorists have proposed
topos theory In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally, on a site). Topoi behave much like the category of sets and possess a notion ...
as an alternative to traditional axiomatic set theory. Topos theory can interpret various alternatives to that theory, such as constructivism, finite set theory, and
computable Computability is the ability to solve a problem by an effective procedure. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is cl ...
set theory. Topoi also give a natural setting for forcing and discussions of the independence of choice from ZF, as well as providing the framework for
pointless topology In mathematics, pointless topology, also called point-free topology (or pointfree topology) or topology without points and locale theory, is an approach to topology that avoids mentioning point (mathematics), points, and in which the Lattice (order ...
and Stone spaces. An active area of research is the
univalent foundations Univalent foundations are an approach to the foundations of mathematics in which mathematical Structuralism (philosophy of mathematics), structures are built out of objects called ''types''. Types in univalent foundations do not correspond exactly ...
and related to it homotopy type theory. Within homotopy type theory, a set may be regarded as a homotopy 0-type, with universal properties of sets arising from the inductive and recursive properties of
higher inductive type In mathematical logic and computer science, homotopy type theory (HoTT) refers to various lines of development of intuitionistic type theory, based on the interpretation of types as objects to which the intuition of (abstract) homotopy theory ap ...
s. Principles such as the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
and the
law of the excluded middle In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction and th ...
can be formulated in a manner corresponding to the classical formulation in set theory or perhaps in a spectrum of distinct ways unique to type theory. Some of these principles may be proven to be a consequence of other principles. The variety of formulations of these axiomatic principles allows for a detailed analysis of the formulations required in order to derive various mathematical results.


Mathematical education

As set theory gained popularity as a foundation for modern mathematics, there has been support for the idea of introducing the basics of
naive set theory Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It de ...
early in
mathematics education In contemporary education, mathematics education—known in Europe as the didactics or pedagogy of mathematics—is the practice of teaching, learning, and carrying out Scholarly method, scholarly research into the transfer of mathematical know ...
. In the US in the 1960s, the New Math experiment aimed to teach basic set theory, among other abstract concepts, to
primary school A primary school (in Ireland, India, the United Kingdom, Australia, New Zealand, Trinidad and Tobago, Jamaica, South Africa, and Singapore), elementary school, or grade school (in North America and the Philippines) is a school for primary ...
students but was met with much criticism. The math syllabus in European schools followed this trend and currently includes the subject at different levels in all grades.
Venn diagram A Venn diagram is a widely used diagram style that shows the logical relation between set (mathematics), sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple ...
s are widely employed to explain basic set-theoretic relationships to primary school students (even though
John Venn John Venn, Fellow of the Royal Society, FRS, Fellow of the Society of Antiquaries of London, FSA (4 August 1834 – 4 April 1923) was an English mathematician, logician and philosopher noted for introducing Venn diagrams, which are used in l ...
originally devised them as part of a procedure to assess the validity of
inference Inferences are steps in logical reasoning, moving from premises to logical consequences; etymologically, the word '' infer'' means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinct ...
s in
term logic In logic and formal semantics, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by ...
). Set theory is used to introduce students to logical operators (NOT, AND, OR), and semantic or rule description (technically
intensional definition In logic, extensional and intensional definitions are two key ways in which the objects, concepts, or referents a term refers to can be defined. They give meaning or denotation to a term. An intensional definition gives meaning to a term by sp ...
) of sets (e.g. "months starting with the letter ''A''"), which may be useful when learning
computer programming Computer programming or coding is the composition of sequences of instructions, called computer program, programs, that computers can follow to perform tasks. It involves designing and implementing algorithms, step-by-step specifications of proc ...
, since
Boolean logic In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
is used in various
programming language A programming language is a system of notation for writing computer programs. Programming languages are described in terms of their Syntax (programming languages), syntax (form) and semantics (computer science), semantics (meaning), usually def ...
s. Likewise, sets and other collection-like objects, such as
multiset In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the ''multiplicity'' of ...
s and
list A list is a Set (mathematics), set of discrete items of information collected and set forth in some format for utility, entertainment, or other purposes. A list may be memorialized in any number of ways, including existing only in the mind of t ...
s, are common
datatype In computer science and computer programming, a data type (or simply type) is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these ...
s in computer science and programming. In addition to that, certain sets are commonly used in mathematical teaching, such as the sets \mathbb of
natural numbers In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
, \mathbb of
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, \mathbb of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, etc.). These are commonly used when defining a
mathematical function In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. ...
as a relation from one set (the domain) to another set (the
range Range may refer to: Geography * Range (geographic), a chain of hills or mountains; a somewhat linear, complex mountainous or hilly area (cordillera, sierra) ** Mountain range, a group of mountains bordered by lowlands * Range, a term used to i ...
).


See also

* Glossary of set theory *
Class (set theory) In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like ...
* List of set theory topics *
Relational model The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data are represented in terms of t ...
 – borrows from set theory *
Venn diagram A Venn diagram is a widely used diagram style that shows the logical relation between set (mathematics), sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple ...
*
Elementary Theory of the Category of Sets Elementary may refer to: Arts, entertainment, and media Music * ''Elementary'' (Cindy Morgan album), 2001 * ''Elementary'' (The End album), 2007 * ''Elementary'', a Melvin "Wah-Wah Watson" Ragin album, 1977 Other uses in arts, entertainment, a ...
* Structural set theory


Notes


Citations


References

* * * * * * * * * *


External links

* Daniel Cunningham
Set Theory
article in the ''
Internet Encyclopedia of Philosophy The ''Internet Encyclopedia of Philosophy'' (''IEP'') is a scholarly online encyclopedia with around 900 articles about philosophy, philosophers, and related topics. The IEP publishes only peer review, peer-reviewed and blind-refereed original p ...
''. * Jose Ferreiros
"The Early Development of Set Theory"
article in the '' tanford Encyclopedia of Philosophy'. * Foreman, Matthew,
Akihiro Kanamori is a Japanese-born American mathematician. He specializes in set theory and is the author of the monograph on large cardinals, '' The Higher Infinite''. He has written several essays on the history of mathematics, especially set theory. Kanamor ...
, eds.
Handbook of Set Theory
'. 3 vols., 2010. Each chapter surveys some aspect of contemporary research in set theory. Does not cover established elementary set theory, on which see Devlin (1993). * * * Schoenflies, Arthur (1898)
Mengenlehre
in Klein's encyclopedia. * * {{Authority control S Formal methods Georg Cantor