Tarski–Grothendieck Set Theory
Tarski–Grothendieck set theory (TG, named after mathematicians Alfred Tarski and Alexander Grothendieck) is an axiomatic set theory. It is a non-conservative extension of Zermelo–Fraenkel set theory (ZFC) and is distinguished from other axiomatic set theories by the inclusion of Tarski's axiom, which states that for each set there is a "Tarski universe" it belongs to (see below). Tarski's axiom implies the existence of inaccessible cardinals, providing a richer ontology than ZFC. For example, adding this axiom supports category theory. The Mizar system and Metamath use Tarski–Grothendieck set theory for formal verification of proofs. Axioms Tarski–Grothendieck set theory starts with conventional Zermelo–Fraenkel set theory and then adds “Tarski's axiom”. We will use the axioms, definitions, and notation of Mizar to describe it. Mizar's basic objects and processes are fully formal; they are described informally below. First, let us assume that: * Given any s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alfred Tarski
Alfred Tarski (; ; born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, type theory, and analytic philosophy. Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school, Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983.#FefA, Feferman A. His biographers Anita Burdman Feferman and Solomon Feferman state that, "Along with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Domain Of A Function
In mathematics, the domain of a function is the Set (mathematics), set of inputs accepted by the Function (mathematics), function. It is sometimes denoted by \operatorname(f) or \operatornamef, where is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". More precisely, given a function f\colon X\to Y, the domain of is . In modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that and are both sets of real numbers, the function can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the -axis of the graph, as the projection of the graph of the function onto the -axis. For a function f\colon X\to Y, the set is called the ''codomain'': the set to which all outputs must belong. The set of specific outputs the function assigns to elements of is called its ''Range of a function, range'' or ''Image (mathematic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unordered Pair
In mathematics, an unordered pair or pair set is a set of the form , i.e. a set having two elements ''a'' and ''b'' with , where = . In contrast, an ordered pair (''a'', ''b'') has ''a'' as its first element and ''b'' as its second element, which means (''a'', ''b'') ≠ (''b'', ''a''). While the two elements of an ordered pair (''a'', ''b'') need not be distinct, modern authors only call an unordered pair if ''a'' ≠ ''b''. But for a few authors a singleton is also considered an unordered pair, although today, most would say that is a multiset. It is typical to use the term unordered pair even in the situation where the elements a and b could be equal, as long as this equality has not yet been established. A set with precisely two elements is also called a 2-set or (rarely) a binary set. An unordered pair is a finite set; its cardinality (number of elements) is 2 or (if the two elements are not distinct) 1. In axiomatic set theory, t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singleton (mathematics)
In mathematics, a singleton (also known as a unit set or one-point set) is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and \ are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, but not a singleton). A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the same ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Empty Set
In axiomatic set theory, the axiom of empty set, also called the axiom of null set and the axiom of existence, is a statement that asserts the existence of a set with no elements. It is an axiom of Kripke–Platek set theory and the variant of general set theory that Burgess (2005) calls "ST," and a demonstrable truth in Zermelo set theory and Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ..., with or without the axiom of choice. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\exists A\, \forall x\, (x \notin A). Or, alternatively, \exists x\, \lnot \exists y\, (y \in x). In words: :Existential quantification, There is a Set (mathematics), set such that no element is a member of it. Interpretation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grothendieck Universe
In mathematics, a Grothendieck universe is a set ''U'' with the following properties: # If ''x'' is an element of ''U'' and if ''y'' is an element of ''x'', then ''y'' is also an element of ''U''. (''U'' is a transitive set.) # If ''x'' and ''y'' are both elements of ''U'', then \ is an element of ''U''. # If ''x'' is an element of ''U'', then ''P''(''x''), the power set of ''x'', is also an element of ''U''. # If \_ is a family of elements of ''U'', and if is an element of ''U'', then the union \bigcup_ x_\alpha is an element of ''U''. A Grothendieck universe is meant to provide a set in which all of mathematics can be performed. (In fact, uncountable Grothendieck universes provide models of set theory with the natural ∈-relation, natural powerset operation etc.). Elements of a Grothendieck universe are sometimes called small sets. The idea of universes is due to Alexander Grothendieck, who used them as a way of avoiding proper classes in algebraic geometry. Grothendieck’s o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transitive Set
In set theory, a branch of mathematics, a set A is called transitive if either of the following equivalent conditions holds: * whenever x \in A, and y \in x, then y \in A. * whenever x \in A, and x is not an urelement, then x is a subset of A. Similarly, a class M is transitive if every element of M is a subset of M. Examples Using the definition of ordinal numbers suggested by John von Neumann, ordinal numbers are defined as hereditarily transitive sets: an ordinal number is a transitive set whose members are also transitive (and thus ordinals). The class of all ordinals is a transitive class. Any of the stages V_\alpha and L_\alpha leading to the construction of the von Neumann universe V and Gödel's constructible universe L are transitive sets. The universes V and L themselves are transitive classes. This is a complete list of all finite transitive sets with up to 20 brackets: * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinality
The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thumb is ''pollex'' (compare ''hallux'' for big toe), and the corresponding adjective for thumb is ''pollical''. Definition Thumb and fingers The English word ''finger'' has two senses, even in the context of appendages of a single typical human hand: 1) Any of the five terminal members of the hand. 2) Any of the four terminal members of the hand, other than the thumb. Linguistically, it appears that the original sense was the first of these two: (also rendered as ) was, in the inferred Proto-Indo-European language, a suffixed form of (or ), which has given rise to many Indo-European-family words (tens of them defined in English dictionaries) that involve, or stem from, concepts of fiveness. The thumb shares the following with each of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Powerset
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as well as the reason of the notation denoting the power set are demonstrated in the below. : An indicator function or a characteristic function of a subset of a set with the cardinality is a function from to the two-element set , denoted as , a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. When quantified, A \subseteq B is represented as \forall x \left(x \in A \Rightarrow x \in B\right). One can prove the statement A \subseteq B by applying a proof technique known as the element argument:Let sets ''A'' and ''B'' be given. To prove that A \subseteq B, # suppose that ''a'' is a particular but arbitrarily chosen element of A # show that ''a'' is an element of ''B''. The validity of this technique ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Power Set
In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. It guarantees for every set x the existence of a set \mathcal(x), the power set of x, consisting precisely of the subsets of x. By the axiom of extensionality, the set \mathcal(x) is unique. The axiom of power set appears in most axiomatizations of set theory. It is generally considered uncontroversial, although constructive set theory prefers a weaker version to resolve concerns about predicativity. Formal statement The subset relation \subseteq is not a primitive notion in formal set theory and is not used in the formal language of the Zermelo–Fraenkel axioms. Rather, the subset relation \subseteq is defined in terms of set membership, \in. Given this, in the formal language of the Zermelo–Fraenkel axioms, the axiom of power set reads: :\forall x \, \exists y \, \forall z \, \in y \iff \forall w \, (w \in z \Rightarrow w \in x)/math> where ''y'' is the power s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family (S_i)_ of nonempty sets (S_i as a nonempty set indexed with i), there exists an indexed set (x_i)_ such that x_i \in S_i for every i \in I. The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. The axiom of choice is equivalent to the statement that every partition has a transversal. In many cases, a set created by choosing elements can be made without invoking the axiom of choice, particularly if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available — some distinguishing property that happens to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |