HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the quaternion number system extends the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. Quaternions were first described by the Irish mathematician
William Rowan Hamilton Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish astronomer, mathematician, and physicist who made numerous major contributions to abstract algebra, classical mechanics, and optics. His theoretical works and mathema ...
in 1843 and applied to
mechanics Mechanics () is the area of physics concerned with the relationships between force, matter, and motion among Physical object, physical objects. Forces applied to objects may result in Displacement (vector), displacements, which are changes of ...
in
three-dimensional space In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values ('' coordinates'') are required to determine the position of a point. Most commonly, it is the three- ...
. The algebra of quaternions is often denoted by (for ''Hamilton''), or in
blackboard bold Blackboard bold is a style of writing Emphasis (typography), bold symbols on a blackboard by doubling certain strokes, commonly used in mathematical lectures, and the derived style of typeface used in printed mathematical texts. The style is most ...
by \mathbb H. Quaternions are not a field, because multiplication of quaternions is not, in general,
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
. Quaternions provide a definition of the quotient of two
vector Vector most often refers to: * Euclidean vector, a quantity with a magnitude and a direction * Disease vector, an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematics a ...
s in a three-dimensional space. Quaternions are generally represented in the form a + b\,\mathbf i + c\,\mathbf j +d\,\mathbf k, where the coefficients , , , are
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, and , are the ''basis vectors'' or ''basis elements''. Quaternions are used in
pure mathematics Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications ...
, but also have practical uses in
applied mathematics Applied mathematics is the application of mathematics, mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and Industrial sector, industry. Thus, applied mathematics is a ...
, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics,
computer vision Computer vision tasks include methods for image sensor, acquiring, Image processing, processing, Image analysis, analyzing, and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical ...
, robotics,
magnetic resonance imaging Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and ...
and crystallographic texture analysis. They can be used alongside other methods of rotation, such as
Euler angles The Euler angles are three angles introduced by Leonhard Euler to describe the Orientation (geometry), orientation of a rigid body with respect to a fixed coordinate system.Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 189� ...
and rotation matrices, or as an alternative to them, depending on the application. In modern terms, quaternions form a four-dimensional
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
normed division algebra over the real numbers, and therefore a ring, also a
division ring In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicativ ...
and a domain. It is a special case of a
Clifford algebra In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real number ...
, classified as \operatorname_(\mathbb R)\cong \operatorname_^+(\mathbb R). It was the first noncommutative division algebra to be discovered. According to the Frobenius theorem, the algebra \mathbb H is one of only two finite-dimensional
division ring In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicativ ...
s containing a proper
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to the real numbers; the other being the complex numbers. These rings are also Euclidean Hurwitz algebras, of which the quaternions are the largest
associative algebra In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
(and hence the largest ring). Further extending the quaternions yields the non-associative
octonion In mathematics, the octonions are a normed division algebra over the real numbers, a kind of Hypercomplex number, hypercomplex Number#Classification, number system. The octonions are usually represented by the capital letter O, using boldface or ...
s, which is the last
normed division algebra In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a nondegenerate positive-defini ...
over the real numbers. The next extension gives the sedenions, which have
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
s and so cannot be a normed division algebra. The unit quaternions give a group structure on the 3-sphere isomorphic to the groups Spin(3) and SU(2), i.e. the
universal cover In topology, a covering or covering projection is a map between topological spaces that, intuitively, locally acts like a projection of multiple copies of a space onto itself. In particular, coverings are special types of local homeomorphism ...
group of
SO(3) In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space \R^3 under the operation of composition. By definition, a rotation about the origin is a ...
. The positive and negative basis vectors form the eight-element
quaternion group In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a nonabelian group, non-abelian group (mathematics), group of Group order, order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. ...
.


History

Quaternions were introduced by Hamilton in 1843.See Important precursors to this work included Euler's four-square identity (1748) and Olinde Rodrigues' parameterization of general rotations by four parameters (1840), but neither of these writers treated the four-parameter rotations as an algebra.
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
had discovered quaternions in 1819, but this work was not published until 1900. Hamilton knew that the complex numbers could be interpreted as points in a plane, and he was looking for a way to do the same for points in three-dimensional
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
. Points in space can be represented by their coordinates, which are triples of numbers, and for many years he had known how to add and subtract triples of numbers. However, for a long time, he had been stuck on the problem of multiplication and division. He could not figure out how to calculate the quotient of the coordinates of two points in space. In fact, Ferdinand Georg Frobenius later proved in 1877 that for a division algebra over the real numbers to be finite-dimensional and associative, it cannot be three-dimensional, and there are only three such division algebras: \mathbb (complex numbers) and \mathbb H (quaternions) which have dimension 1, 2, and 4 respectively. The great breakthrough in quaternions finally came on Monday 16 October 1843 in
Dublin Dublin is the capital and largest city of Republic of Ireland, Ireland. Situated on Dublin Bay at the mouth of the River Liffey, it is in the Provinces of Ireland, province of Leinster, and is bordered on the south by the Dublin Mountains, pa ...
, when Hamilton was on his way to the
Royal Irish Academy The Royal Irish Academy (RIA; ), based in Dublin, is an academic body that promotes study in the natural sciences, arts, literature, and social sciences. It is Ireland's premier List of Irish learned societies, learned society and one of its le ...
to preside at a council meeting. As he walked along the towpath of the Royal Canal with his wife, the concepts behind quaternions were taking shape in his mind. When the answer dawned on him, Hamilton could not resist the urge to carve the formula for the quaternions, \mathbf^2 = \mathbf^2 = \mathbf^2 = \mathbf = -1 into the stone of Brougham Bridge as he paused on it. Although the carving has since faded away, there has been an annual pilgrimage since 1989 called the Hamilton Walk for scientists and mathematicians who walk from Dunsink Observatory to the Royal Canal bridge in remembrance of Hamilton's discovery. On the following day, Hamilton wrote a letter to his friend and fellow mathematician, John T. Graves, describing the train of thought that led to his discovery. This letter was later published in a letter to the '' London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science''; Hamilton states: Hamilton called a quadruple with these rules of multiplication a ''quaternion'', and he devoted most of the remainder of his life to studying and teaching them. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions'
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
ic properties. He founded a school of "quaternionists", and he tried to popularize quaternions in several books. The last and longest of his books, ''Elements of Quaternions'', was 800 pages long; it was edited by his son and published shortly after his death. After Hamilton's death, the Scottish mathematical physicist Peter Tait became the chief exponent of quaternions. At this time, quaternions were a mandatory examination topic in Dublin. Topics in physics and geometry that would now be described using vectors, such as
kinematics In physics, kinematics studies the geometrical aspects of motion of physical objects independent of forces that set them in motion. Constrained motion such as linked machine parts are also described as kinematics. Kinematics is concerned with s ...
in space and
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
, were described entirely in terms of quaternions. There was even a professional research association, the Quaternion Society, devoted to the study of quaternions and other
hypercomplex number In mathematics, hypercomplex number is a traditional term for an element (mathematics), element of a finite-dimensional Algebra over a field#Unital algebra, unital algebra over a field, algebra over the field (mathematics), field of real numbers. ...
systems. From the mid-1880s, quaternions began to be displaced by
vector analysis Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
, which had been developed by
Josiah Willard Gibbs Josiah Willard Gibbs (; February 11, 1839 – April 28, 1903) was an American mechanical engineer and scientist who made fundamental theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynami ...
,
Oliver Heaviside Oliver Heaviside ( ; 18 May 1850 – 3 February 1925) was an English mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vector calculus, an ...
, and
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (; ; 31 August 1821 – 8 September 1894; "von" since 1883) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The ...
. Vector analysis described the same phenomena as quaternions, so it borrowed some ideas and terminology liberally from the literature on quaternions. However, vector analysis was conceptually simpler and notationally cleaner, and eventually quaternions were relegated to a minor role in mathematics and
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
. A side-effect of this transition is that Hamilton's work is difficult to comprehend for many modern readers. Hamilton's original definitions are unfamiliar and his writing style was wordy and difficult to follow. However, quaternions have had a revival since the late 20th century, primarily due to their utility in describing spatial rotations. The representations of rotations by quaternions are more compact and quicker to compute than the representations by
matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
. In addition, unlike Euler angles, they are not susceptible to "
gimbal lock Gimbal lock is the loss of one degree of freedom (mechanics), degree of freedom in a multi-dimensional mechanism at certain alignments of the axes. In a three-dimensional three-gimbal mechanism, gimbal lock occurs when the axes of two of the gi ...
". For this reason, quaternions are used in
computer graphics Computer graphics deals with generating images and art with the aid of computers. Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. ...
, Presented at
SIGGRAPH SIGGRAPH (Special Interest Group on Computer Graphics and Interactive Techniques) is an annual conference centered around computer graphics organized by ACM, starting in 1974 in Boulder, CO. The main conference has always been held in North ...
'85.
computer vision Computer vision tasks include methods for image sensor, acquiring, Image processing, processing, Image analysis, analyzing, and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical ...
,
robotics Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots. Within mechanical engineering, robotics is the design and construction of the physical structures of robots, while in computer s ...
,
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
image sampling,
control theory Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the applic ...
,
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, Scalar potential, potential fields, Seismic tomograph ...
, attitude control,
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,
bioinformatics Bioinformatics () is an interdisciplinary field of science that develops methods and Bioinformatics software, software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, ...
,
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the Motion (physics), physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamics ( ...
,
computer simulation Computer simulation is the running of a mathematical model on a computer, the model being designed to represent the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determin ...
s, and
orbital mechanics Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal ...
. For example, it is common for the attitude control systems of spacecraft to be commanded in terms of quaternions. Quaternions have received another boost from
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
because of their relationships with the
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong t ...
s.


Quaternions in physics

The finding of 1924 that in
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
the spin of an electron and other matter particles (known as
spinors In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infi ...
) can be described using quaternions (in the form of the famous Pauli spin matrices) furthered their interest; quaternions helped to understand how rotations of electrons by 360° can be discerned from those by 720° (the " Plate trick"). , their use has not overtaken rotation groups.A more personal view of quaternions was written by Joachim Lambek in 1995. He wrote in his essay ''If Hamilton had prevailed: quaternions in physics'': "My own interest as a graduate student was raised by the inspiring book by Silberstein". He concluded by stating "I firmly believe that quaternions can supply a shortcut for pure mathematicians who wish to familiarize themselves with certain aspects of theoretical physics."


Definition

A ''quaternion'' is an expression of the form a + b\,\mathbf + c\,\mathbf + d\,\mathbf, where , , , , are real numbers, and , , , are
symbols A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise different concep ...
that can be interpreted as unit-vectors pointing along the three spatial axes. In practice, if one of , , , is 0, the corresponding term is omitted; if , , , are all zero, the quaternion is the ''zero quaternion'', denoted 0; if one of , , equals 1, the corresponding term is written simply , or . Hamilton describes a quaternion q = a + b\,\mathbf + c\,\mathbf + d\,\mathbf, as consisting of a scalar part and a vector part. The quaternion b\,\mathbf + c\,\mathbf + d\,\mathbf is called the ''vector part'' (sometimes ''imaginary part'') of , and is the ''scalar part'' (sometimes ''real part'') of . A quaternion that equals its real part (that is, its vector part is zero) is called a ''scalar'' or ''real quaternion'', and is identified with the corresponding real number. That is, the real numbers are ''embedded'' in the quaternions. (More properly, the field of real numbers is isomorphic to a subset of the quaternions. The field of complex numbers is also isomorphic to three subsets of quaternions.) A quaternion that equals its vector part is called a ''vector quaternion''. The set of quaternions is a 4-dimensional
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over the real numbers, with \left\ as a basis, by the component-wise addition \begin &(a_1 + b_1\mathbf i + c_1\mathbf j + d_1\mathbf k) + (a_2 + b_2\mathbf i + c_2\mathbf j + d_2\mathbf k) \\ mu&\qquad = (a_1 + a_2) + (b_1 + b_2)\mathbf i + (c_1 + c_2)\mathbf j + (d_1 + d_2)\mathbf k, \end and the component-wise scalar multiplication \lambda(a + b\,\mathbf i + c\,\mathbf j + d\,\mathbf k) = \lambda a + (\lambda b)\mathbf i + (\lambda c)\mathbf j + (\lambda d)\mathbf k. A multiplicative group structure, called the ''Hamilton product'', denoted by juxtaposition, can be defined on the quaternions in the following way: *The real quaternion is the
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
. *The real quaternions commute with all other quaternions, that is for every quaternion and every real quaternion . In algebraic terminology this is to say that the field of real quaternions are the ''center'' of this quaternion algebra. *The product is first given for the basis elements (see next subsection), and then extended to all quaternions by using the
distributive property In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary ...
and the center property of the real quaternions. The Hamilton product is not
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, but is
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
, thus the quaternions form an associative algebra over the real numbers. *Additionally, every nonzero quaternion has an inverse with respect to the Hamilton product: (a + b\,\mathbf i + c\,\mathbf j + d \,\mathbf k)^ = \frac\,(a - b\,\mathbf i - c\,\mathbf j- d\,\mathbf k). Thus the quaternions form a division algebra.


Multiplication of basis elements

The multiplication with of the basis elements , and is defined by the fact that is a
multiplicative identity In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
, that is, \mathbf i \, 1 = 1 \, \mathbf i = \mathbf i, \qquad \mathbf j \, 1 = 1 \, \mathbf j = \mathbf j, \qquad \mathbf k \, 1 = 1 \, \mathbf k= \mathbf k . The products of other basis elements are \begin \mathbf i^2 &= \mathbf j^2 = \mathbf k^2 = -1, \\ mu\mathbf &= - \mathbf = \mathbf k, \qquad \mathbf = - \mathbf = \mathbf i, \qquad \mathbf = - \mathbf = \mathbf j. \end Combining these rules, \begin \mathbf&=-1. \end


Center

The ''center'' of a
noncommutative ring In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not ...
is the subring of elements such that for every . The center of the quaternion algebra is the subfield of real quaternions. In fact, it is a part of the definition that the real quaternions belong to the center. Conversely, if belongs to the center, then 0 = \mathbf i\,q - q\,\mathbf i = 2c\,\mathbf + 2d\,\mathbf = 2c\,\mathbf k - 2d\,\mathbf j, and . A similar computation with instead of shows that one has also . Thus is a ''real'' quaternion. The quaternions form a division algebra. This means that the non-commutativity of multiplication is the only property that makes quaternions different from a field. This non-commutativity has some unexpected consequences, among them that a
polynomial equation In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field (mathematics), field, often the field of the rational numbers. For example, x^5-3x+1=0 is a ...
over the quaternions can have more distinct solutions than the degree of the polynomial. For example, the equation has infinitely many quaternion solutions, which are the quaternions such that . Thus these "roots of –1" form a
unit sphere In mathematics, a unit sphere is a sphere of unit radius: the locus (mathematics), set of points at Euclidean distance 1 from some center (geometry), center point in three-dimensional space. More generally, the ''unit -sphere'' is an n-sphere, -s ...
in the three-dimensional space of vector quaternions.


Hamilton product

For two elements and , their product, called the Hamilton product () (), is determined by the products of the basis elements and the
distributive law In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary ...
. The distributive law makes it possible to expand the product so that it is a sum of products of basis elements. This gives the following expression: \begin &a_1a_2 &&+ a_1b_2 \mathbf i &&+ a_1c_2 \mathbf j &&+ a_1d_2 \mathbf k\\ + &b_1a_2 \mathbf i &&+ b_1b_2 \mathbf i^2 &&+ b_1c_2 \mathbf &&+ b_1d_2 \mathbf\\ + &c_1a_2 \mathbf j &&+ c_1b_2 \mathbf &&+ c_1c_2 \mathbf j^2 &&+ c_1d_2 \mathbf\\ + &d_1a_2 \mathbf k &&+ d_1b_2 \mathbf &&+ d_1c_2 \mathbf &&+ d_1d_2 \mathbf k^2 \end Now the basis elements can be multiplied using the rules given above to get: \begin &a_1a_2 &&- b_1b_2 &&- c_1c_2 &&- d_1d_2\\ + (&a_1b_2 &&+ b_1a_2 &&+ c_1d_2 &&- d_1c_2) \mathbf i\\ + (&a_1c_2 &&- b_1d_2 &&+ c_1a_2 &&+ d_1b_2) \mathbf j\\ + (&a_1d_2 &&+ b_1c_2 &&- c_1b_2 &&+ d_1a_2) \mathbf k \end


Scalar and vector parts

A quaternion of the form , where is a real number, is called scalar, and a quaternion of the form , where , , and are real numbers, and at least one of , , or is nonzero, is called a vector quaternion. If is any quaternion, then is called its scalar part and is called its vector part. Even though every quaternion can be viewed as a vector in a four-dimensional vector space, it is common to refer to the vector part as vectors in three-dimensional space. With this convention, a vector is the same as an element of the vector space \mathbb R^3. Hamilton also called vector quaternions right quaternions and real numbers (considered as quaternions with zero vector part) scalar quaternions. If a quaternion is divided up into a scalar part and a vector part, that is, \mathbf q = (r,\,\vec),\ \mathbf q \in \mathbb,\ r \in \mathbb,\ \vec\in \mathbb^3, then the formulas for addition, multiplication, and multiplicative inverse are \begin (r_1,\,\vec_1) + (r_2,\,\vec_2) &= (r_1 + r_2,\,\vec_1 + \vec_2), \\ mu(r_1,\,\vec_1) (r_2,\,\vec_2) &= (r_1 r_2 - \vec_1\cdot\vec_2,\,r_1\vec_2+r_2\vec_1 + \vec_1\times\vec_2), \\ mu(r,\,\vec)^ &= \left(\frac,\ \frac\right), \end where "\cdot" and "\times" denote respectively the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
and the
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
.


Conjugation, the norm, and reciprocal

Conjugation of quaternions is analogous to conjugation of complex numbers and to transposition (also known as reversal) of elements of Clifford algebras. To define it, let q = a + b\,\mathbf i + c\,\mathbf j + d\,\mathbf k be a quaternion. The conjugate of is the quaternion q^* = a - b\,\mathbf i - c\,\mathbf j - d\,\mathbf k . It is denoted by , ''qt'', \tilde q, or . Conjugation is an
involution Involution may refer to: Mathematics * Involution (mathematics), a function that is its own inverse * Involution algebra, a *-algebra: a type of algebraic structure * Involute, a construction in the differential geometry of curves * Exponentiati ...
, meaning that it is its own inverse, so conjugating an element twice returns the original element. The conjugate of a product of two quaternions is the product of the conjugates ''in the reverse order''. That is, if and are quaternions, then , not . The conjugation of a quaternion, in contrast to the complex setting, can be expressed with multiplication and addition of quaternions: q^* = - \tfrac (q + \mathbf i \,q \,\mathbf i + \mathbf j \,q \,\mathbf j + \mathbf k \,q \,\mathbf k). Conjugation can be used to extract the scalar and vector parts of a quaternion. The scalar part of is , and the vector part of is . The
square root In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
of the product of a quaternion with its conjugate is called its ''norm'' and is denoted (Hamilton called this quantity the ''tensor'' of ''q'', but this conflicts with the modern meaning of "
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
"). In formulas, this is expressed as follows: \lVert q \rVert = \sqrt = \sqrt = \sqrt This is always a non-negative real number, and it is the same as the Euclidean norm on \mathbb H considered as the vector space \mathbb R^4. Multiplying a quaternion by a real number scales its norm by the absolute value of the number. That is, if is real, then \lVert\alpha q\rVert = \left, \alpha\\,\lVert q\rVert. This is a special case of the fact that the norm is ''multiplicative'', meaning that \lVert pq \rVert = \lVert p \rVert\,\lVert q \rVert for any two quaternions and . Multiplicativity is a consequence of the formula for the conjugate of a product. Alternatively it follows from the identity \det \begin a + i b & i d + c \\ i d - c & a - i b \end = a^2 + b^2 + c^2 + d^2, (where denotes the usual
imaginary unit The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
) and hence from the multiplicative property of
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
s of square matrices. This norm makes it possible to define the distance between and as the norm of their difference: d(p, q) = \lVert p - q \rVert. This makes \mathbb H a
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
. Addition and multiplication are continuous in regard to the associated metric topology. This follows with exactly the same proof as for the real numbers \mathbb R from the fact that \mathbb H is a normed algebra.


Unit quaternion

A unit quaternion is a quaternion of norm one. Dividing a nonzero quaternion by its norm produces a unit quaternion called the ''
versor In mathematics, a versor is a quaternion of Quaternion#Norm, norm one, also known as a unit quaternion. Each versor has the form :u = \exp(a\mathbf) = \cos a + \mathbf \sin a, \quad \mathbf^2 = -1, \quad a \in ,\pi where the r2 = −1 conditi ...
'' of : \mathbfq = \frac. Every nonzero quaternion has a unique
polar decomposition In mathematics, the polar decomposition of a square real or complex matrix A is a factorization of the form A = U P, where U is a unitary matrix, and P is a positive semi-definite Hermitian matrix (U is an orthogonal matrix, and P is a posit ...
q = \lVert q \rVert \cdot \mathbf q, while the zero quaternion can be formed from any unit quaternion. Using conjugation and the norm makes it possible to define the reciprocal of a nonzero quaternion. The product of a quaternion with its reciprocal should equal 1, and the considerations above imply that the product of q and q^* / \left \Vert q \right \, ^2 is 1 (for either order of multiplication). So the '' reciprocal'' of is defined to be q^ = \frac. Since the multiplication is non-commutative, the quotient quantities or   are different (except if and have parallel vector parts): the notation is ambiguous and should not be used.


Algebraic properties

The set \mathbb H of all quaternions is a vector space over the real numbers with
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
 4. Multiplication of quaternions is associative and distributes over vector addition, but with the exception of the scalar subset, it is not commutative. Therefore, the quaternions \mathbb H are a non-commutative, associative algebra over the real numbers. Even though \mathbb H contains copies of the complex numbers, it is not an associative algebra over the complex numbers. Because it is possible to divide quaternions, they form a division algebra. This is a structure similar to a field except for the non-commutativity of multiplication. Finite-dimensional associative division algebras over the real numbers are very rare. The Frobenius theorem states that there are exactly three: \mathbb R, \mathbb C, and \mathbb H. The norm makes the quaternions into a normed algebra, and normed division algebras over the real numbers are also very rare: Hurwitz's theorem says that there are only four: \mathbb R, \mathbb C, \mathbb H, and \mathbb O (the octonions). The quaternions are also an example of a
composition algebra In mathematics, a composition algebra over a field is a not necessarily associative algebra over together with a nondegenerate quadratic form that satisfies :N(xy) = N(x)N(y) for all and in . A composition algebra includes an involution ...
and of a unital Banach algebra. Because the product of any two basis vectors is plus or minus another basis vector, the set forms a group under multiplication. This non-abelian group is called the quaternion group and is denoted . The real
group ring In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the gi ...
of is a ring \mathbb R mathrm Q_8/math> which is also an eight-dimensional vector space over \mathbb R. It has one basis vector for each element of \mathrm Q_8. The quaternions are isomorphic to the
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
of \mathbb R mathrm Q_8/math> by the ideal generated by the elements , , , and . Here the first term in each of the sums is one of the basis elements , and , and the second term is one of basis elements , and , not the additive inverses of , and .


Quaternions and three-dimensional geometry

The vector part of a quaternion can be interpreted as a coordinate vector in \mathbb R^3; therefore, the algebraic operations of the quaternions reflect the geometry of \mathbb R^3. Operations such as the vector dot and cross products can be defined in terms of quaternions, and this makes it possible to apply quaternion techniques wherever spatial vectors arise. A useful application of quaternions has been to interpolate the orientations of key-frames in computer graphics. For the remainder of this section, , , and will denote both the three imaginary basis vectors of \mathbb H and a basis for \mathbb R^3. Replacing by , by , and by sends a vector to its
additive inverse In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
, so the additive inverse of a vector is the same as its conjugate as a quaternion. For this reason, conjugation is sometimes called the ''spatial inverse''. For two vector quaternions and their
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
, by analogy to vectors in \mathbb R^3, is p \cdot q = b_1 b_2 + c_1 c_2 + d_1 d_2. It can also be expressed in a component-free manner as p \cdot q = \textstyle\frac(p^*q + q^*p) = \textstyle\frac(pq^* + qp^*). This is equal to the scalar parts of the products . Note that their vector parts are different. The
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
of and relative to the orientation determined by the ordered basis , and is p \times q = (c_1 d_2 - d_1 c_2)\mathbf i + (d_1 b_2 - b_1 d_2)\mathbf j + (b_1 c_2 - c_1 b_2)\mathbf k. (Recall that the orientation is necessary to determine the sign.) This is equal to the vector part of the product (as quaternions), as well as the vector part of . It also has the formula p \times q = \textstyle\tfrac(pq - qp). For the
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
, , of two vector quaternions one obtains ,q 2p \times q, which gives the commutation relationship qp= pq - 2p \times q. In general, let and be quaternions and write \begin p &= p_\text + p_\text, \\ muq &= q_\text + q_\text, \end where and are the scalar parts, and and are the vector parts of and . Then we have the formula pq = (pq)_\text + (pq)_\text = (p_\textq_\text - p_\text\cdot q_\text) + (p_\text q_\text + q_\text p_\text + p_\text \times q_\text). This shows that the noncommutativity of quaternion multiplication comes from the multiplication of vector quaternions. It also shows that two quaternions commute if and only if their vector parts are collinear. Hamilton showed that this product computes the third vertex of a spherical triangle from two given vertices and their associated arc-lengths, which is also an algebra of points in
Elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
. Unit quaternions can be identified with rotations in \mathbb R^3 and were called
versor In mathematics, a versor is a quaternion of Quaternion#Norm, norm one, also known as a unit quaternion. Each versor has the form :u = \exp(a\mathbf) = \cos a + \mathbf \sin a, \quad \mathbf^2 = -1, \quad a \in ,\pi where the r2 = −1 conditi ...
s by Hamilton. Also see
Quaternions and spatial rotation unit vector, Unit quaternions, known as versor, ''versors'', provide a convenient mathematics, mathematical notation for representing spatial Orientation (geometry), orientations and rotations of elements in three dimensional space. Specifically, th ...
for more information about modeling three-dimensional rotations using quaternions. See Hanson (2005) for visualization of quaternions.


Matrix representations

Just as complex numbers can be represented as matrices, so can quaternions. There are at least two ways of representing quaternions as matrices in such a way that quaternion addition and multiplication correspond to matrix addition and
matrix multiplication In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
. One is to use 2 × 2 complex matrices, and the other is to use 4 × 4 real matrices. In each case, the representation given is one of a family of linearly related representations. These are
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
s from \mathbb H to the matrix rings and , respectively.


Representation as complex 2 × 2 matrices

The quaternion can be represented using a complex 2 × 2 matrix as \begin \phantom-a + bi & c + di \\ -c + di & a - bi \end. This representation has the following properties: * Constraining any two of , and to zero produces a representation of complex numbers. For example, setting produces a diagonal complex matrix representation of complex numbers, and setting produces a real matrix representation. * The norm of a quaternion (the square root of the product with its conjugate, as with complex numbers) is the square root of the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of the corresponding matrix. * The scalar part of a quaternion is one half of the matrix trace. * The conjugate of a quaternion corresponds to the
conjugate transpose In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \mathbf is an n \times m matrix obtained by transposing \mathbf and applying complex conjugation to each entry (the complex conjugate ...
of the matrix. * By restriction this representation yields a
group isomorphism In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the ...
between the subgroup of unit quaternions and their image SU(2). Topologically, the unit quaternions are the 3-sphere, so the underlying space of SU(2) is also a 3-sphere. The group is important for describing spin in quantum mechanics; see
Pauli matrices In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () ...
. * There is a strong relation between quaternion units and Pauli matrices. The 2 × 2 complex matrix above can be written as a I + b i \sigma_3 + c i \sigma_2 + d i \sigma_1, so in this representation the quaternion units correspond to = . Multiplying any two Pauli matrices always yields a quaternion unit matrix, all of them except for −1. One obtains −1 via ; e.g. the last equality is \mathbf = \sigma_1 \sigma_2 \sigma_3 \sigma_1 \sigma_2 \sigma_3 = -1. The representation in is not unique. A different convention, that preserves the direction of cyclic ordering between the quaternions and the Pauli matrices, is to choose 1 \mapsto \mathbf, \quad \mathbf \mapsto - i \sigma_1 = - \sigma_2 \sigma_3, \quad \mathbf \mapsto - i \sigma_2 = - \sigma_3 \sigma_1, \quad \mathbf \mapsto - i \sigma_3 = - \sigma_1 \sigma_2, This gives an alternative representation, a + b\,\mathbf i + c\,\mathbf j + d\,\mathbf k \mapsto \begin a - di & -c - bi \\ c - bi & \phantom-a + di \end.


Representation as real 4 × 4 matrices

Using 4 × 4 real matrices, that same quaternion can be written as \begin \left \begin a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end \right&= a \left \begin 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end \right+ b \left \begin 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end \right\\ 0mu&\qquad + c \left \begin 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end \right+ d \left \begin 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end \right \end However, the representation of quaternions in is not unique. For example, the same quaternion can also be represented as \begin \left \begin a & d & -b & -c \\ -d & a & c & -b \\ b & -c & a & -d \\ c & b & d & a \end \right&= a \left \begin 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end \right+ b \left \begin 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end \right\\ 0mu&\qquad + c \left \begin 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end \right+ d \left \begin 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end \right \end There exist 48 distinct matrix representations of this form in which one of the matrices represents the scalar part and the other three are all skew-symmetric. More precisely, there are 48 sets of quadruples of matrices with these symmetry constraints such that a function sending , and to the matrices in the quadruple is a homomorphism, that is, it sends sums and products of quaternions to sums and products of matrices. In this representation, the conjugate of a quaternion corresponds to the
transpose In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other ...
of the matrix. The fourth power of the norm of a quaternion is the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of the corresponding matrix. The scalar part of a quaternion is one quarter of the matrix trace. As with the 2 × 2 complex representation above, complex numbers can again be produced by constraining the coefficients suitably; for example, as block diagonal matrices with two 2 × 2 blocks by setting . Each 4×4 matrix representation of quaternions corresponds to a multiplication table of unit quaternions. For example, the last matrix representation given above corresponds to the multiplication table which is isomorphic — through \ — to Constraining any such multiplication table to have the identity in the first row and column and for the signs of the row headers to be opposite to those of the column headers, then there are 3 possible choices for the second column (ignoring sign), 2 possible choices for the third column (ignoring sign), and 1 possible choice for the fourth column (ignoring sign); that makes 6 possibilities. Then, the second column can be chosen to be either positive or negative, the third column can be chosen to be positive or negative, and the fourth column can be chosen to be positive or negative, giving 8 possibilities for the sign. Multiplying the possibilities for the letter positions and for their signs yields 48. Then replacing with , with , with , and with and removing the row and column headers yields a matrix representation of .


Lagrange's four-square theorem

Quaternions are also used in one of the proofs of Lagrange's four-square theorem in
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, which states that every nonnegative integer is the sum of four integer squares. As well as being an elegant theorem in its own right, Lagrange's four square theorem has useful applications in areas of mathematics outside number theory, such as
combinatorial design Combinatorial design theory is the part of combinatorial mathematics that deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of ''balance'' and/or ''symmetry''. These co ...
theory. The quaternion-based proof uses Hurwitz quaternions, a subring of the ring of all quaternions for which there is an analog of the
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is a ...
.


Quaternions as pairs of complex numbers

Quaternions can be represented as pairs of complex numbers. From this perspective, quaternions are the result of applying the
Cayley–Dickson construction In mathematics, the Cayley–Dickson construction, sometimes also known as the Cayley–Dickson process or the Cayley–Dickson procedure produces a sequence of algebra over a field, algebras over the field (mathematics), field of real numbers, eac ...
to the complex numbers. This is a generalization of the construction of the complex numbers as pairs of real numbers. Let \mathbb C^2 be a two-dimensional vector space over the complex numbers. Choose a basis consisting of two elements and . A vector in \mathbb C^2 can be written in terms of the basis elements and as (a + b i)1 + (c + d i)\mathbf j. If we define and , then we can multiply two vectors using the distributive law. Using as an abbreviated notation for the product leads to the same rules for multiplication as the usual quaternions. Therefore, the above vector of complex numbers corresponds to the quaternion . If we write the elements of \mathbb C^2 as ordered pairs and quaternions as quadruples, then the correspondence is (a + bi,\,c + di) \leftrightarrow (a,\,b,\,c,\,d).


Square roots


Square roots of −1

In the complex numbers, \mathbb C, there are exactly two numbers, and , that give −1 when squared. In \mathbb H there are infinitely many square roots of minus one: the quaternion solution for the square root of −1 is the unit
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
in \mathbb R^3. To see this, let be a quaternion, and assume that its square is −1. In terms of , , , and , this means \begin a^2 - b^2 - c^2 - d^2 &= -1, \vphantom \\ mu2ab &= 0, \\ mu2ac &= 0, \\ mu2ad &= 0. \end To satisfy the last three equations, either or , , and are all 0. The latter is impossible because ''a'' is a real number and the first equation would imply that Therefore, and In other words: A quaternion squares to −1 if and only if it is a vector quaternion with norm 1. By definition, the set of all such vectors forms the unit sphere. Only negative real quaternions have infinitely many square roots. All others have just two (or one in the case of 0).


As a union of complex planes

Each antipodal pair of square roots of −1 creates a distinct copy of the complex numbers inside the quaternions. If then the copy is the
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of the function a + bi \mapsto a + b q. This is an
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
from \mathbb C to \mathbb H, which defines a field
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
from \Complex onto its
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
. The images of the embeddings corresponding to and − are identical. Every non-real quaternion generates a
subalgebra In mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations. "Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear opera ...
of the quaternions that is isomorphic to \mathbb C, and is thus a planar subspace of \mathbb H\colon write as the sum of its scalar part and its vector part: q = q_s + \vec_v. Decompose the vector part further as the product of its norm and its
versor In mathematics, a versor is a quaternion of Quaternion#Norm, norm one, also known as a unit quaternion. Each versor has the form :u = \exp(a\mathbf) = \cos a + \mathbf \sin a, \quad \mathbf^2 = -1, \quad a \in ,\pi where the r2 = −1 conditi ...
: q = q_s + \lVert\vec_v\rVert\cdot\mathbf\vec_v=q_s+\, \vec q_v\, \,\frac. (This is not the same as q_s + \lVert q\rVert\cdot\mathbfq.) The versor of the vector part of , \mathbf\vec_v, is a right versor with –1 as its square. A straightforward verification shows that a + bi \mapsto a + b\mathbf\vec_v defines an injective
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
of normed algebras from \mathbb C into the quaternions. Under this homomorphism, is the image of the complex number q_s + \lVert\vec_v\rVert i. As \mathbb H is the union of the images of all these homomorphisms, one can view the quaternions as a pencil of planes intersecting on the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
. Each of these
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
s contains exactly one pair of antipodal points of the sphere of square roots of minus one.


Commutative subrings

The relationship of quaternions to each other within the complex subplanes of \mathbb H can also be identified and expressed in terms of commutative
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
s. Specifically, since two quaternions and commute (i.e., ) only if they lie in the same complex subplane of \mathbb H, the profile of \mathbb H as a union of complex planes arises when one seeks to find all commutative subrings of the quaternion ring.


Square roots of arbitrary quaternions

Any quaternion \mathbf q = (r,\, \vec) (represented here in scalar–vector representation) has at least one square root \sqrt = (x,\, \vec) which solves the equation \sqrt^ = (x,\, \vec)^2 = \mathbf q. Looking at the scalar and vector parts in this equation separately yields two equations, which when solved gives the solutions \sqrt = \sqrt = \pm\left(\sqrt,\ \frac\sqrt\right), where \, \vec\, = \sqrt=\sqrt is the norm of \vec and \, \mathbf q\, = \sqrt = \sqrt is the norm of \mathbf q. For any scalar quaternion \mathbf q, this equation provides the correct square roots if \vec / \, \vec\, is interpreted as an arbitrary unit vector. Therefore, nonzero, non-scalar quaternions, or positive scalar quaternions, have exactly two roots, while 0 has exactly one root (0), and negative scalar quaternions have infinitely many roots, which are the vector quaternions located on \ \times S^2\bigl(\sqrt\bigr), i.e., where the scalar part is zero and the vector part is located on the
2-sphere A sphere (from Greek , ) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ''center' ...
with radius \sqrt.


Functions of a quaternion variable

Like functions of a complex variable, functions of a quaternion variable suggest useful physical models. For example, the original electric and magnetic fields described by Maxwell were functions of a quaternion variable. Examples of other functions include the extension of the
Mandelbrot set The Mandelbrot set () is a two-dimensional set (mathematics), set that is defined in the complex plane as the complex numbers c for which the function f_c(z)=z^2+c does not Stability theory, diverge to infinity when Iteration, iterated starting ...
and
Julia set In complex dynamics, the Julia set and the Classification of Fatou components, Fatou set are two complement set, complementary sets (Julia "laces" and Fatou "dusts") defined from a function (mathematics), function. Informally, the Fatou set of ...
s into 4-dimensional space.


Exponential, logarithm, and power functions

Given a quaternion, q = a + b\,\mathbf i + c\,\mathbf j + d\,\mathbf k = a + \mathbf, the exponential is computed as \exp(q) = \sum_^\infty \frac = e^ \left(\cos \, \mathbf\, + \frac \sin \, \mathbf\, \right), and the logarithm is \ln(q) = \ln \, q\, + \frac \arccos \frac. It follows that the polar decomposition of a quaternion may be written q=\, q\, e^ = \, q\, \left(\cos(\varphi) + \hat \sin(\varphi)\right), where the
angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
\varphi a = \, q \, \cos( \varphi ) and the unit vector \hat is defined by: \mathbf = \hat \, \mathbf\, = \hat\, q\, \sin(\varphi). Any unit quaternion may be expressed in polar form as: q=\exp. The power of a quaternion raised to an arbitrary (real) exponent is given by: q^x = \, q\, ^x e^ = \, q\, ^x \left(\cos(x\varphi) + \hat\,\sin(x\varphi)\right).


Geodesic norm

The geodesic distance between unit quaternions and is defined as: d_\text(p, q) = \lVert \ln(p^ q) \rVert. and amounts to the absolute value of half the angle subtended by and along a
great arc In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
of the sphere. This angle can also be computed from the quaternion
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
without the logarithm as: d_\text(p, q) = \arccos(2(p \cdot q)^2 - 1).


Three-dimensional and four-dimensional rotation groups

The word "
conjugation Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form *Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change o ...
", besides the meaning given above, can also mean taking an element to where is some nonzero quaternion. All elements that are conjugate to a given element (in this sense of the word conjugate) have the same real part and the same norm of the vector part. (Thus the conjugate in the other sense is one of the conjugates in this sense.) Thus the multiplicative group of nonzero quaternions acts by conjugation on the copy of \mathbb R^3 consisting of quaternions with real part equal to zero. Conjugation by a unit quaternion (a quaternion of absolute value 1) with real part is a rotation by an angle , the axis of the rotation being the direction of the vector part. The advantages of quaternions are: * Avoiding
gimbal lock Gimbal lock is the loss of one degree of freedom (mechanics), degree of freedom in a multi-dimensional mechanism at certain alignments of the axes. In a three-dimensional three-gimbal mechanism, gimbal lock occurs when the axes of two of the gi ...
, a problem with systems such as Euler angles. * Faster and more compact than matrices. * Nonsingular representation (compared with Euler angles for example). * Pairs of unit quaternions represent a rotation in 4D space (see '' Rotations in 4-dimensional Euclidean space: Algebra of 4D rotations''). The set of all unit quaternions (
versor In mathematics, a versor is a quaternion of Quaternion#Norm, norm one, also known as a unit quaternion. Each versor has the form :u = \exp(a\mathbf) = \cos a + \mathbf \sin a, \quad \mathbf^2 = -1, \quad a \in ,\pi where the r2 = −1 conditi ...
s) forms a 3-sphere and a group (a
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
) under multiplication, double covering the group \text(3,\mathbb) of real orthogonal 3×3 
matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
of
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
 1 since ''two'' unit quaternions correspond to every rotation under the above correspondence. See plate trick. The image of a subgroup of versors is a
point group In geometry, a point group is a group (mathematics), mathematical group of symmetry operations (isometry, isometries in a Euclidean space) that have a Fixed point (mathematics), fixed point in common. The Origin (mathematics), coordinate origin o ...
, and conversely, the preimage of a point group is a subgroup of versors. The preimage of a finite point group is called by the same name, with the prefix binary. For instance, the preimage of the
icosahedral group In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of th ...
is the binary icosahedral group. The versors' group is isomorphic to , the group of complex unitary 2×2 matrices of
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
1. Let be the set of quaternions of the form where and are either all
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s or all half-integers. The set is a ring (in fact a domain) and a lattice and is called the ring of Hurwitz quaternions. There are 24 unit quaternions in this ring, and they are the vertices of a regular 24 cell with
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
They correspond to the double cover of the rotational symmetry group of the regular
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
. Similarly, the vertices of a regular 600 cell with Schläfli symbol can be taken as the unit
icosian In mathematics, the icosians are a specific set of Hamiltonian quaternions with the same symmetry as the 600-cell. The term can be used to refer to two related, but distinct, concepts: * The icosian Group (mathematics), group: a multiplicative g ...
s, corresponding to the double cover of the rotational symmetry group of the
regular icosahedron The regular icosahedron (or simply ''icosahedron'') is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with Regular polygon, regular faces to each of its pentagonal faces, or by putting ...
. The double cover of the rotational symmetry group of the regular
octahedron In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of i ...
corresponds to the quaternions that represent the vertices of the disphenoidal 288-cell.


Quaternion algebras

The Quaternions can be generalized into further algebras called ''quaternion algebras''. Take to be any field with characteristic different from 2, and and to be elements of ; a four-dimensional unitary associative algebra can be defined over with basis and , where , and (so ). Quaternion algebras are isomorphic to the algebra of 2×2 matrices over or form division algebras over , depending on the choice of and .


Quaternions as the even part of

The usefulness of quaternions for geometrical computations can be generalised to other dimensions by identifying the quaternions as the even part \operatorname_^+(\mathbb R) of the Clifford algebra \operatorname_(\mathbb R). This is an associative multivector algebra built up from fundamental basis elements using the product rules \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = 1, \sigma_m \sigma_n = - \sigma_n \sigma_m \qquad (m \neq n). If these fundamental basis elements are taken to represent vectors in 3D space, then it turns out that the ''reflection'' of a vector in a plane perpendicular to a unit vector can be written: r^ = - w\, r\, w. Two reflections make a rotation by an angle twice the angle between the two reflection planes, so r^ = \sigma_2 \sigma_1 \, r \, \sigma_1 \sigma_2 corresponds to a rotation of 180° in the plane containing ''σ''1 and ''σ''2. This is very similar to the corresponding quaternion formula, r^ = -\mathbf\, r\, \mathbf. Indeed, the two structures \operatorname_^+(\mathbb R) and \mathbb H are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
. One natural identification is 1 \mapsto 1, \quad \mathbf \mapsto - \sigma_2 \sigma_3, \quad \mathbf \mapsto - \sigma_3 \sigma_1, \quad \mathbf \mapsto - \sigma_1 \sigma_2, and it is straightforward to confirm that this preserves the Hamilton relations \mathbf^2 = \mathbf^2 = \mathbf^2 = \mathbf = -1. In this picture, so-called "vector quaternions" (that is, pure imaginary quaternions) correspond not to vectors but to bivectors – quantities with magnitudes and orientations associated with particular 2D ''planes'' rather than 1D ''directions''. The relation to complex numbers becomes clearer, too: in 2D, with two vector directions and , there is only one bivector basis element , so only one imaginary. But in 3D, with three vector directions, there are three bivector basis elements , , , so three imaginaries. This reasoning extends further. In the Clifford algebra \operatorname_(\mathbb R), there are six bivector basis elements, since with four different basic vector directions, six different pairs and therefore six different linearly independent planes can be defined. Rotations in such spaces using these generalisations of quaternions, called rotors, can be very useful for applications involving
homogeneous coordinates In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. ...
. But it is only in 3D that the number of basis bivectors equals the number of basis vectors, and each bivector can be identified as a
pseudovector In physics and mathematics, a pseudovector (or axial vector) is a quantity that transforms like a vector under continuous rigid transformations such as rotations or translations, but which does ''not'' transform like a vector under certain ' ...
. There are several advantages for placing quaternions in this wider setting: See also: * Rotors are a natural part of geometric algebra and easily understood as the encoding of a double reflection. * In geometric algebra, a rotor and the objects it acts on live in the same space. This eliminates the need to change representations and to encode new data structures and methods, which is traditionally required when augmenting linear algebra with quaternions. * Rotors are universally applicable to any element of the algebra, not just vectors and other quaternions, but also lines, planes, circles, spheres, rays, and so on. * In the conformal model of Euclidean geometry, rotors allow the encoding of rotation, translation and scaling in a single element of the algebra, universally acting on any element. In particular, this means that rotors can represent rotations around an arbitrary axis, whereas quaternions are limited to an axis through the origin. * Rotor-encoded transformations make interpolation particularly straightforward. * Rotors carry over naturally to
pseudo-Euclidean space In mathematics and theoretical physics, a pseudo-Euclidean space of signature is a finite- dimensional real -space together with a non- degenerate quadratic form . Such a quadratic form can, given a suitable choice of basis , be applied to a vect ...
s, for example, the
Minkowski space In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model. The model helps show how a ...
of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
. In such spaces rotors can be used to efficiently represent
Lorentz boost In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation ...
s, and to interpret formulas involving the
gamma matrices In mathematical physics, the gamma matrices, \ \left\\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra \ \mathr ...
. For further detail about the geometrical uses of Clifford algebras, see Geometric algebra.


Brauer group

The quaternions are "essentially" the only (non-trivial)
central simple algebra In ring theory and related areas of mathematics a central simple algebra (CSA) over a field ''K'' is a finite-dimensional associative ''K''-algebra ''A'' that is simple, and for which the center is exactly ''K''. (Note that ''not'' every simple ...
(CSA) over the real numbers, in the sense that every CSA over the real numbers is Brauer equivalent to either the real numbers or the quaternions. Explicitly, the
Brauer group In mathematics, the Brauer group of a field ''K'' is an abelian group whose elements are Morita equivalence classes of central simple algebras over ''K'', with addition given by the tensor product of algebras. It was defined by the algebraist ...
of the real numbers consists of two classes, represented by the real numbers and the quaternions, where the Brauer group is the set of all CSAs, up to equivalence relation of one CSA being a matrix ring over another. By the Artin–Wedderburn theorem (specifically, Wedderburn's part), CSAs are all matrix algebras over a division algebra, and thus the quaternions are the only non-trivial division algebra over the real numbers. CSAs – finite dimensional rings over a field, which are
simple algebra In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a sim ...
s (have no non-trivial 2-sided ideals, just as with fields) whose center is exactly the field – are a noncommutative analog of extension fields, and are more restrictive than general ring extensions. The fact that the quaternions are the only non-trivial CSA over the real numbers (up to equivalence) may be compared with the fact that the complex numbers are the only non-trivial finite field extension of the real numbers.


Quotations


See also

* * * * * * * * * * * * * * * *


Notes


References


Further reading


Books and publications

* * * * (''See section on quaternions.'') * *
review
. * Surveys the major and minor vector systems of the 19th century (Hamilton, Möbius, Bellavitis, Clifford, Grassmann, Tait, Peirce, Maxwell, Macfarlane, MacAuley, Gibbs, Heaviside). * * * For molecules that can be regarded as classical rigid bodies,
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the Motion (physics), physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamics ( ...
computer simulation employs quaternions. * * * * * * * Hamilton, William Rowan (1853), "
Lectures on Quaternions
'". Royal Irish Academy. *Hamilton (1866)
Elements of Quaternions
'
University of Dublin The University of Dublin (), corporately named as The Chancellor, Doctors and Masters of the University of Dublin, is a research university located in Dublin, Republic of Ireland. It is the degree-awarding body for Trinity College Dublin, whi ...
Press. Edited by William Edwin Hamilton, son of the deceased author. *Hamilton (1899) ''Elements of Quaternions'' volume I, (1901) volume II. Edited by Charles Jasper Joly; published by Longmans, Green & Co. * * * * * * * * * * * * *


Links and monographs

* Notices and materials related to Quaternion conference presentations * * *
Quaternions for Computer Graphics and Mechanics (Gernot Hoffman)
* * * 3D Raytraced Quaternion Julia Fractals * Great page explaining basic math with links to straight forward rotation conversion formulae. * * * * * * * * * David Erickson, Defence Research and Development Canada (DRDC), Complete derivation of rotation matrix from unitary quaternion representation in DRDC TR 2005-228 paper. * * * describes how the quaternions can be made into a skew-commutative algebra graded by . * *
Part II
(PDF; using Hamilton's terminology, which differs from the modern usage) *
two expository papers about continuous functional calculus and spectral theory in quanternionic Hilbert spaces useful in rigorous quaternionic quantum mechanics.
Quaternions
the Android app shows the quaternion corresponding to the orientation of the device.
Rotating Objects Using Quaternions
article speaking to the use of Quaternions for rotation in video games/computer graphics.


External links

* * Paulson, Lawrence C.br>Quaternions (Formal proof development in Isabelle/HOL, Archive of Formal Proofs)

Quaternions – Visualisation
{{Authority control, state=collapsed Composition algebras William Rowan Hamilton