HOME

TheInfoList



OR:

Oscillation is the repetitive or periodic variation, typically in
time Time is the continuous progression of existence that occurs in an apparently irreversible process, irreversible succession from the past, through the present, and into the future. It is a component quantity of various measurements used to sequ ...
, of some measure about a central value (often a point of
equilibrium Equilibrium may refer to: Film and television * ''Equilibrium'' (film), a 2002 science fiction film * '' The Story of Three Loves'', also known as ''Equilibrium'', a 1953 romantic anthology film * "Equilibrium" (''seaQuest 2032'') * ''Equilibr ...
) or between two or more different states. Familiar examples of oscillation include a swinging
pendulum A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate i ...
and
alternating current Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
. Oscillations can be used in physics to approximate complex interactions, such as those between atoms. Oscillations occur not only in mechanical systems but also in
dynamic system In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock ...
s in virtually every area of science: for example the beating of the
human heart The heart is a muscular organ found in humans and other animals. This organ pumps blood through the blood vessels. The heart and blood vessels together make the circulatory system. The pumped blood carries oxygen and nutrients to the tiss ...
(for circulation),
business cycle Business cycles are intervals of general expansion followed by recession in economic performance. The changes in economic activity that characterize business cycles have important implications for the welfare of the general population, governmen ...
s in
economics Economics () is a behavioral science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interac ...
,
predator–prey Predation is a biological interaction in which one organism, the predator, kills and eats another organism, its prey. It is one of a family of common List of feeding behaviours, feeding behaviours that includes parasitism and micropredation ...
population cycles in
ecology Ecology () is the natural science of the relationships among living organisms and their Natural environment, environment. Ecology considers organisms at the individual, population, community (ecology), community, ecosystem, and biosphere lev ...
, geothermal
geyser A geyser (, ) is a spring with an intermittent water discharge ejected turbulently and accompanied by steam. The formation of geysers is fairly rare and is caused by particular hydrogeological conditions that exist only in a few places on Ea ...
s in
geology Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth ...
, vibration of strings in
guitar The guitar is a stringed musical instrument that is usually fretted (with Fretless guitar, some exceptions) and typically has six or Twelve-string guitar, twelve strings. It is usually held flat against the player's body and played by strumming ...
and other
string instrument In musical instrument classification, string instruments, or chordophones, are musical instruments that produce sound from vibrating strings when a performer strums, plucks, strikes or sounds the strings in varying manners. Musicians play some ...
s, periodic firing of
nerve cell A neuron (American English), neurone (British English), or nerve cell, is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system. They are located in the nervous system and help to ...
s in the brain, and the periodic swelling of
Cepheid variable A Cepheid variable () is a type of variable star that pulsates radially, varying in both diameter and temperature. It changes in brightness, with a well-defined stable period (typically 1–100 days) and amplitude. Cepheids are important cosmi ...
stars in
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
. The term ''
vibration Vibration () is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the os ...
'' is precisely used to describe a mechanical oscillation. Oscillation, especially rapid oscillation, may be an undesirable phenomenon in
process control Industrial process control (IPC) or simply process control is a system used in modern manufacturing which uses the principles of control theory and physical industrial control systems to monitor, control and optimize continuous Industrial processe ...
and
control theory Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the applic ...
(e.g. in
sliding mode control In control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamic system, dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces th ...
), where the aim is convergence to stable state. In these cases it is called chattering or flapping, as in
valve A valve is a device or natural object that regulates, directs or controls the flow of a fluid (gases, liquids, fluidized solids, or Slurry, slurries) by opening, closing, or partially obstructing various passageways. Valves are technically Pip ...
chatter, and
route flapping In computer networking and telecommunications Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information over a distance using electronic means, typically through cables, radio waves, or ...
.


Simple harmonic oscillation

The simplest mechanical oscillating system is a
weight In science and engineering, the weight of an object is a quantity associated with the gravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition. Some sta ...
attached to a
linear In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a '' function'' (or '' mapping''); * linearity of a '' polynomial''. An example of a linear function is the function defined by f(x) ...
spring subject to only
weight In science and engineering, the weight of an object is a quantity associated with the gravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition. Some sta ...
and tension. Such a system may be approximated on an air table or ice surface. The system is in an
equilibrium Equilibrium may refer to: Film and television * ''Equilibrium'' (film), a 2002 science fiction film * '' The Story of Three Loves'', also known as ''Equilibrium'', a 1953 romantic anthology film * "Equilibrium" (''seaQuest 2032'') * ''Equilibr ...
state when the spring is static. If the system is displaced from the equilibrium, there is a net ''restoring force'' on the mass, tending to bring it back to equilibrium. However, in moving the mass back to the equilibrium position, it has acquired
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
which keeps it moving beyond that position, establishing a new restoring force in the opposite sense. If a constant
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
such as
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
is added to the system, the point of equilibrium is shifted. The time taken for an oscillation to occur is often referred to as the oscillatory ''period''. The systems where the restoring force on a body is directly proportional to its displacement, such as the dynamics of the spring-mass system, are described mathematically by the
simple harmonic oscillator In mechanics and physics, simple harmonic motion (sometimes abbreviated as ) is a special type of periodic function, periodic motion an object experiences by means of a restoring force whose magnitude is directly proportionality (mathematics), ...
and the regular periodic motion is known as
simple harmonic motion In mechanics and physics, simple harmonic motion (sometimes abbreviated as ) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from ...
. In the spring-mass system, oscillations occur because, at the static equilibrium displacement, the mass has
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
which is converted into
potential energy In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity ...
stored in the spring at the extremes of its path. The spring-mass system illustrates some common features of oscillation, namely the existence of an equilibrium and the presence of a restoring force which grows stronger the further the system deviates from equilibrium. In the case of the spring-mass system,
Hooke's law In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of ...
states that the restoring force of a spring is: F = -kx By using
Newton's second law Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body re ...
, the differential equation can be derived: \ddot = -\frac km x = -\omega^2 x, where \omega = \sqrt The solution to this differential equation produces a sinusoidal position function: x(t) = A \cos (\omega t - \delta) where is the frequency of the oscillation, is the amplitude, and is the
phase shift In physics and mathematics, the phase (symbol φ or ϕ) of a wave or other periodic function F of some real variable t (such as time) is an angle-like quantity representing the fraction of the cycle covered up to t. It is expressed in such a s ...
of the function. These are determined by the initial conditions of the system. Because cosine oscillates between 1 and −1 infinitely, our spring-mass system would oscillate between the positive and negative amplitude forever without friction.


Two-dimensional oscillators

In two or three dimensions, harmonic oscillators behave similarly to one dimension. The simplest example of this is an
isotropic In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also ...
oscillator, where the restoring force is proportional to the displacement from equilibrium with the same restorative constant in all directions. \vec = -k\vec This produces a similar solution, but now there is a different equation for every direction. \begin x(t) &= A_x \cos(\omega t - \delta _x), \\ y(t) &= A_y \cos(\omega t - \delta_y), \\ & \;\, \vdots \end


Anisotropic oscillators

With
anisotropic Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ver ...
oscillators, different directions have different constants of restoring forces. The solution is similar to isotropic oscillators, but there is a different frequency in each direction. Varying the frequencies relative to each other can produce interesting results. For example, if the frequency in one direction is twice that of another, a figure eight pattern is produced. If the ratio of frequencies is irrational, the motion is quasiperiodic. This motion is periodic on each axis, but is not periodic with respect to r, and will never repeat.


Damped oscillations

All real-world oscillator systems are thermodynamically irreversible. This means there are dissipative processes such as
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
or
electrical resistance The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual paral ...
which continually convert some of the energy stored in the oscillator into heat in the environment. This is called damping. Thus, oscillations tend to decay with time unless there is some net source of energy into the system. The simplest description of this decay process can be illustrated by oscillation decay of the harmonic oscillator. Damped oscillators are created when a resistive force is introduced, which is dependent on the first derivative of the position, or in this case velocity. The differential equation created by Newton's second law adds in this resistive force with an arbitrary constant . This example assumes a linear dependence on velocity. m\ddot + b\dot + kx = 0 This equation can be rewritten as before: \ddot + 2 \beta \dot + \omega_0^2x = 0, where 2 \beta = \frac b m. This produces the general solution: x(t) = e^ \left(C_1e^ + C_2 e^\right), where \omega_1 = \sqrt. The exponential term outside of the parenthesis is the decay function and is the damping coefficient. There are 3 categories of damped oscillators: under-damped, where ; over-damped, where ; and critically damped, where .


Driven oscillations

In addition, an oscillating system may be subject to some external force, as when an AC circuit is connected to an outside power source. In this case the oscillation is said to be '' driven''. The simplest example of this is a spring-mass system with a
sinusoidal A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics, as a linear motion over time, this is '' simple harmonic motion''; as rotation, it correspond ...
driving force. \ddot + 2 \beta\dot + \omega_0^2 x = f(t),where f(t) = f_0 \cos(\omega t + \delta). This gives the solution: x(t) = A \cos(\omega t - \delta) + A_ \cos(\omega_1 t - \delta_), where A = \sqrt and \delta = \tan^\left(\frac \right) The second term of is the transient solution to the differential equation. The transient solution can be found by using the initial conditions of the system. Some systems can be excited by energy transfer from the environment. This transfer typically occurs where systems are embedded in some
fluid In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
flow. For example, the phenomenon of flutter in
aerodynamics Aerodynamics () is the study of the motion of atmosphere of Earth, air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an ...
occurs when an arbitrarily small displacement of an
aircraft An aircraft ( aircraft) is a vehicle that is able to flight, fly by gaining support from the Atmosphere of Earth, air. It counters the force of gravity by using either Buoyancy, static lift or the Lift (force), dynamic lift of an airfoil, or, i ...
wing A wing is a type of fin that produces both Lift (force), lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform (aeronautics), planform. Wing efficiency is expressed as lift-to-d ...
(from its equilibrium) results in an increase in the
angle of attack In fluid dynamics, angle of attack (AOA, α, or \alpha) is the angle between a Airfoil#Airfoil terminology, reference line on a body (often the chord (aircraft), chord line of an airfoil) and the vector (geometry), vector representing the relat ...
of the wing on the air flow and a consequential increase in
lift coefficient In fluid dynamics, the lift coefficient () is a dimensionless quantity that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a co ...
, leading to a still greater displacement. At sufficiently large displacements, the
stiffness Stiffness is the extent to which an object resists deformation in response to an applied force. The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is. Calculations The stiffness, k, of a ...
of the wing dominates to provide the restoring force that enables an oscillation.


Resonance

Resonance Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
occurs in a damped driven oscillator when ω = ω0, that is, when the driving frequency is equal to the natural frequency of the system. When this occurs, the denominator of the amplitude is minimized, which maximizes the amplitude of the oscillations.


Coupled oscillations

The harmonic oscillator and the systems it models have a single
degree of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinites ...
. More complicated systems have more degrees of freedom, for example, two masses and three springs (each mass being attached to fixed points and to each other). In such cases, the behavior of each variable influences that of the others. This leads to a ''coupling'' of the oscillations of the individual degrees of freedom. For example, two pendulum clocks (of identical frequency) mounted on a common wall will tend to synchronise. This
phenomenon A phenomenon ( phenomena), sometimes spelled phaenomenon, is an observable Event (philosophy), event. The term came into its modern Philosophy, philosophical usage through Immanuel Kant, who contrasted it with the noumenon, which ''cannot'' be ...
was first observed by
Christiaan Huygens Christiaan Huygens, Halen, Lord of Zeelhem, ( , ; ; also spelled Huyghens; ; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution ...
in 1665. The apparent motions of the compound oscillations typically appears very complicated but a more economic, computationally simpler and conceptually deeper description is given by resolving the motion into
normal mode A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies ...
s. The simplest form of coupled oscillators is a 3 spring, 2 mass system, where masses and spring constants are the same. This problem begins with deriving Newton's second law for both masses. \begin m_1 \ddot_1 = -(k_1 + k_2)x_1 + k_2 x_2 \\ m_2\ddot_2 = k_2 x_1 - (k_2+k_3)x_2 \end The equations are then generalized into matrix form. F = M\ddot = kx, where M=\begin m_1 & 0 \\ 0 & m_2 \end, x = \begin x_1 \\ x_2 \end, and k = \begin k_1+k_2 & -k_2 \\ -k_2 & k_2+k_3 \end The values of and can be substituted into the matrices. \begin m_1=m_2=m ,\;\; k_1=k_2=k_3=k, \\ M = \begin m & 0 \\ 0 & m \end, \;\; k=\begin 2k & -k \\ -k & 2k \end \end These matrices can now be plugged into the general solution. \begin \left(k-M \omega^2\right) a &= 0 \\ \begin 2k-m \omega^2 & -k \\ -k & 2k - m \omega^2 \end &= 0 \end The determinant of this matrix yields a quadratic equation. \begin &\left(3k-m \omega^2\right)\left(k-m \omega^2\right)= 0 \\ &\omega_1 = \sqrt , \;\; \omega_2 = \sqrt \end Depending on the starting point of the masses, this system has 2 possible frequencies (or a combination of the two). If the masses are started with their displacements in the same direction, the frequency is that of a single mass system, because the middle spring is never extended. If the two masses are started in opposite directions, the second, faster frequency is the frequency of the system. More special cases are the coupled oscillators where energy alternates between two forms of oscillation. Well-known is the Wilberforce pendulum, where the oscillation alternates between the elongation of a vertical spring and the rotation of an object at the end of that spring. Coupled oscillators are a common description of two related, but different phenomena. One case is where both oscillations affect each other mutually, which usually leads to the occurrence of a single, entrained oscillation state, where both oscillate with a ''compromise frequency''. Another case is where one external oscillation affects an internal oscillation, but is not affected by this. In this case the regions of synchronization, known as Arnold Tongues, can lead to highly complex phenomena as for instance chaotic dynamics.


Small oscillation approximation

In physics, a system with a set of conservative forces and an equilibrium point can be approximated as a harmonic oscillator near equilibrium. An example of this is the
Lennard-Jones potential In computational chemistry, molecular physics, and physical chemistry, the Lennard-Jones potential (also termed the LJ potential or 12-6 potential; named for John Lennard-Jones) is an intermolecular pair potential. Out of all the intermolecul ...
, where the potential is given by: U(r) = U_0 \left \left(\frac r \right)^ - \left(\frac r \right)^6 \right/math> The equilibrium points of the function are then found: \begin \frac &= 0 = U_0 \left 12 r_0^ r^ + 6r_0^6r^\right\\ \Rightarrow r &\approx r_0 \end The second derivative is then found, and used to be the effective potential constant: \begin \gamma_\text &= \left.\frac \_ = U_0 \left 12(13) r_0^ r^ - 6 (7) r_0^6 r^ \right\\ ex&= \frac \end The system will undergo oscillations near the equilibrium point. The force that creates these oscillations is derived from the effective potential constant above: F= - \gamma_\text(r-r_0) = m_\text \ddot r This differential equation can be re-written in the form of a simple harmonic oscillator: \ddot r + \frac (r-r_0) = 0 Thus, the frequency of small oscillations is: \omega_0 = \sqrt = \sqrt Or, in general form \omega_0 = \sqrt This approximation can be better understood by looking at the potential curve of the system. By thinking of the potential curve as a hill, in which, if one placed a ball anywhere on the curve, the ball would roll down with the slope of the potential curve. This is true due to the relationship between potential energy and force. \frac = - F(r) By thinking of the potential in this way, one will see that at any local minimum there is a "well" in which the ball would roll back and forth (oscillate) between r_\text and r_\text. This approximation is also useful for thinking of
Kepler orbits In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in ...
.


Continuous system – waves

As the number of degrees of freedom becomes arbitrarily large, a system approaches continuity; examples include a string or the surface of a body of
water Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
. Such systems have (in the
classical limit The classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. The classical limit is used with physical theories that predict n ...
) an infinite number of normal modes and their oscillations occur in the form of waves that can characteristically propagate.


Mathematics

The mathematics of oscillation deals with the quantification of the amount that a sequence or function tends to move between extremes. There are several related notions: oscillation of a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, oscillation of a real-valued
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
at a point, and oscillation of a function on an interval (or
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
).


Examples


Mechanical

*
Double pendulum In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamical systems, dy ...
*
Foucault pendulum The Foucault pendulum or Foucault's pendulum is a simple device named after French physicist Léon Foucault, conceived as an experiment to demonstrate the Earth's rotation. If a long and heavy pendulum suspended from the high roof above a circu ...
*
Helmholtz resonator Helmholtz resonance, also known as wind throb, refers to the phenomenon of air resonance in a cavity, an effect named after the German physicist Hermann von Helmholtz. This type of resonance occurs when air is forced in and out of a cavity (the re ...
*Oscillations in the Sun (
helioseismology Helioseismology is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismol ...
), stars (
asteroseismology Asteroseismology is the study of oscillations in stars. Stars have many Resonance, resonant modes and frequencies, and the path of sound waves passing through a star depends on the local speed of sound, which in turn depends on local temperature a ...
) and Neutron-star oscillations. *
Quantum harmonic oscillator The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, ...
* Playground swing *
String instrument In musical instrument classification, string instruments, or chordophones, are musical instruments that produce sound from vibrating strings when a performer strums, plucks, strikes or sounds the strings in varying manners. Musicians play some ...
s * Torsional vibration *
Tuning fork A tuning fork is an acoustic resonator in the form of a two-pronged fork with the prongs ( ''tines'') formed from a U-shaped bar of elastic metal (usually steel). It resonates at a specific constant pitch when set vibrating by striking it ag ...
*
Vibrating string A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrati ...
* Wilberforce pendulum *
Lever escapement The lever escapement, invented by the English clockmaker Thomas Mudge in 1754 (albeit first used in 1769), is a type of escapement that is used in almost all mechanical watches, as well as small mechanical non-pendulum clocks, alarm clocks, a ...


Electrical

*
Alternating current Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
* Armstrong (or Tickler or Meissner) oscillator * Astable multivibrator * Blocking oscillator * Butler oscillator * Clapp oscillator * Colpitts oscillator *
Delay-line oscillator A delay-line oscillator is a form of electronic oscillator that uses a delay line as its principal timing element. The circuit is set to oscillate by inverting the output of the delay line and feeding that signal back to the input of the delay li ...
*
Electronic oscillator An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found ...
* Extended interaction oscillator *
Hartley oscillator The Hartley oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by a tuned circuit consisting of capacitors and inductors, that is, an LC oscillator. The circuit was invented in 1915 by American engine ...
* Oscillistor *
Phase-shift oscillator A phase-shift oscillator is a linear circuit, linear electronic oscillator circuit that produces a sine wave output. It consists of an inverting amplifier element such as a transistor or op amp with its output feedback, fed back to its input throug ...
*
Pierce oscillator The Pierce oscillator is a type of electronic oscillator particularly well-suited for use in piezoelectric crystal oscillator circuits. Named for its inventor, George W. Pierce (1872–1956), the Pierce oscillator is a derivative of the Colpit ...
*
Relaxation oscillator In electronics, a relaxation oscillator is a nonlinear electronic oscillator circuit that produces a nonsinusoidal repetitive output signal, such as a triangle wave or square wave. on Peter Millet'Tubebookswebsite The circuit consists of a ...
*
RLC circuit An RLC circuit is an electrical circuit consisting of a electrical resistance, resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote ...
* Royer oscillator *
Vačkář oscillator Vačkář, feminine: Vačkářová is a Czech language surname. Notable people with the surname include: People * Dalibor Cyril Vačkář (1906–1984), Czech composer * Václav Vačkář (1881–1954), Czech composer * Vladimír Vačkář (born 19 ...
* Wien bridge oscillator


Electro-mechanical

*
Crystal oscillator A crystal oscillator is an electronic oscillator Electrical circuit, circuit that uses a piezoelectricity, piezoelectric crystal as a frequency selective surface, frequency-selective element. The oscillator frequency is often used to keep trac ...


Optical

*
Laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
(oscillation of
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
with frequency of order 1015 Hz) *
Oscillator Toda In physics, the Toda oscillator is a special kind of nonlinear oscillator. It represents a chain of particles with exponential potential interaction between neighbors. These concepts are named after Morikazu Toda. The Toda oscillator is used a ...
or self-pulsation (pulsation of output power of
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
at frequencies 104 Hz – 106 Hz in the transient regime) * Quantum oscillator may refer to an optical
local oscillator In electronics, the term local oscillator (LO) refers to an electronic oscillator when used in conjunction with a Frequency mixer, mixer to change the frequency of a signal. This frequency conversion process, also called Heterodyne, heterodyning ...
, as well as to a usual model in
quantum optics Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry that studies the behavior of photons (individual quanta of light). It includes the study of the particle-like properties of photons and their interaction ...
.


Biological

*
Circadian rhythm A circadian rhythm (), or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism (i.e., Endogeny (biology), endogenous) and responds to the env ...
*
Bacterial Circadian Rhythms Bacterial circadian rhythms, like other circadian rhythms, are endogenous "biological clocks" that have the following three characteristics: (a) in constant conditions (i.e. constant temperature and either constant light or constant darkness ) they ...
* Circadian oscillator * Lotka–Volterra equation *
Neural oscillation Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by ...
* Oscillating gene * Segmentation clock


HUMAN

*
Neural oscillation Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by ...
*
Insulin release oscillations Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main anabolic hormone of the body. It regulates the metabolism of carb ...
* gonadotropin releasing hormone pulsations *
Pilot-induced oscillation Pilot-induced oscillations (PIOs), as defined by MIL-HDBK-1797A, are ''sustained or uncontrollable oscillations resulting from efforts of the pilot to control the aircraft''. They occur when the aviator, pilot of an aircraft inadvertently comman ...
*
Voice production In articulatory phonetics, the place of articulation (also point of articulation) of a consonant is an approximate location along the vocal tract where its production occurs. It is a point where a constriction is made between an active and a pas ...


Economic and social

*
Business cycle Business cycles are intervals of general expansion followed by recession in economic performance. The changes in economic activity that characterize business cycles have important implications for the welfare of the general population, governmen ...
*
Generation gap A generation gap or generational gap is a difference of opinions and outlooks between one generation and another. These differences may relate to beliefs, politics, language, work, demographics and values. The differences between generations can ...
*
Malthusian Malthusianism is a theory that population growth is potentially exponential, according to the Malthusian growth model, while the growth of the food supply or other resources is linear, which eventually reduces living standards to the point of trig ...
economics *
News cycle The 24-hour news cycle (or 24/7 news cycle) is the 24-hour investigation and reporting of news, concomitant with fast-paced lifestyles. The vast news resources available in recent decades have increased competition for audience and advertiser at ...


Climate and geophysics

*
Atlantic multidecadal oscillation The Atlantic Multidecadal Oscillation (AMO), also known as Atlantic Multidecadal Variability (AMV), is the theorized variability of the sea surface temperature (SST) of the North Atlantic Ocean on the timescale of several decades. While there ...
*
Chandler wobble The Chandler wobble or Chandler variation of latitude is a small deviation in the Earth's axis of rotation relative to the solid earth, which was discovered by and named after American astronomer Seth Carlo Chandler in 1891. It amounts to change ...
*
Climate oscillation Climate variability includes all the variations in the climate that last longer than individual weather events, whereas the term climate change only refers to those variations that persist for a longer period of time, typically decades or more ...
*
El Niño-Southern Oscillation EL, El or el may refer to: Arts and entertainment Fictional entities * El, a character from the manga series ''Shugo Chara!'' by Peach-Pit * Eleven (''Stranger Things'') (El), a fictional character in the TV series ''Stranger Things'' * El, fami ...
*
Pacific decadal oscillation The Pacific decadal oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of 20°N. O ...
*
Quasi-biennial oscillation The quasi-biennial oscillation (QBO) is a quasiperiodic oscillation of the equatorial zonal wind between easterlies and westerlies in the tropical stratosphere with a mean period of 28 to 29 months. The alternating wind regimes develop at the to ...


Astrophysics

*
Neutron stars A neutron star is the gravitationally collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to th ...
*
Cyclic Model A cyclic model (or oscillating model) is any of several cosmological models in which the universe follows infinite, or indefinite, self-sustaining cycles. For example, the oscillating universe theory briefly considered by Albert Einstein in 1930 ...


Quantum mechanical

*
Neutral particle oscillation In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quant ...
, e.g.
neutrino oscillation Neutrino oscillation is a quantum mechanics, quantum mechanical phenomenon in which a neutrino created with a specific lepton lepton number, family number ("lepton flavor": electron, muon, or tau lepton, tau) can later be Quantum measurement, mea ...
s *
Quantum harmonic oscillator The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, ...


Chemical

*
Belousov–Zhabotinsky reaction A Belousov–Zhabotinsky reaction, or BZ reaction, is one of a class of reactions that serve as a classical example of non-equilibrium thermodynamics, resulting in the establishment of a nonlinear chemical oscillator. The only common element in ...
* Mercury beating heart *
Briggs–Rauscher reaction The Briggs–Rauscher oscillating reaction is one of a small number of known oscillating chemical reactions. It is especially well suited for demonstration purposes because of its visually striking colour changes: the freshly prepared colourless ...
* Bray–Liebhafsky reaction


Computing

* Cellular Automata oscillator


See also

*
Antiresonance In the physics of coupled oscillators, antiresonance, by analogy with resonance, is a pronounced minimum in the amplitude of an oscillator at a particular frequency, accompanied by a large, abrupt shift in its oscillation phase. Such frequencies a ...
*
Beat (acoustics) In acoustics, a beat is an interference pattern between two sounds of slightly different frequencies, ''perceived'' as a periodic variation in volume whose rate is the difference of the two frequencies. With tuning instruments that can produc ...
*
BIBO stability In signal processing, specifically control theory, bounded-input, bounded-output (BIBO) stability is a form of stability for signals and systems that take inputs. If a system is BIBO stable, then the output will be bounded for every input to the ...
*
Critical speed In solid mechanics, in the field of rotordynamics, the critical speed is the theoretical angular velocity that excites the natural frequency of a rotating object, such as a shaft, propeller, leadscrew, or gear. As the speed of rotation approaches ...
*
Cycle (music) In music, a cycle can be several things. Acoustically, it is one complete vibration, the base unit of Hertz being one cycle per second. Theoretically, an interval cycle is a collection of pitch classes created by a sequence of identical intervals. ...
*
Dynamical system In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
* Earthquake engineering *
Feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause and effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handle ...
*
Fourier transform In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
for computing periodicity in evenly spaced data *
Frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
*
Hidden oscillation In the bifurcation theory, a bounded oscillation that is born without loss of stability of stationary set is called a hidden oscillation. In nonlinear control theory, the birth of a hidden oscillation in a time-invariant control system with bounde ...
* Madden–Julian oscillation *
Least-squares spectral analysis Least-squares spectral analysis (LSSA) is a method of estimating a Spectral density estimation#Overview, frequency spectrum based on a least-squares fit of Sine wave, sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the ...
for computing periodicity in unevenly spaced data * Oscillator phase noise *
Periodic function A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a ''cycle''. For example, the t ...
*
Phase noise In signal processing, phase noise is the frequency-domain representation of random fluctuations in the phase of a waveform, corresponding to time-domain deviations from perfect periodicity (jitter). Generally speaking, radio-frequency enginee ...
*
Quasiperiodicity Quasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours". Quasiperiodic behavior is almost but not quite periodic. The term used to d ...
*
Reciprocating motion Reciprocating motion, also called reciprocation, is a repetitive up-and-down or back-and-forth linear motion. It is found in a wide range of mechanisms, including reciprocating engines and pumps. The two opposite motions that comprise a single ...
*
Resonator A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a reso ...
*
Rhythm Rhythm (from Greek , ''rhythmos'', "any regular recurring motion, symmetry") generally means a " movement marked by the regulated succession of strong and weak elements, or of opposite or different conditions". This general meaning of regular r ...
*
Seasonality In time series data, seasonality refers to the trends that occur at specific regular intervals less than a year, such as weekly, monthly, or quarterly. Seasonality may be caused by various factors, such as weather, vacation, and holidays and consi ...
*
Self-oscillation Self-oscillation is the generation and maintenance of a periodic motion by a source of power that lacks any corresponding periodicity. The oscillator itself controls the phase with which the external power acts on it. Self-oscillators are therefor ...
*
Signal generator A signal generator is one of a class of Electronics, electronic devices that generates electrical signals with set properties of amplitude, frequency, and wave shape. These generated signals are used as a stimulus for electronic measurements, typ ...
* Squegging *
Strange attractor In the mathematics, mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor va ...
*
Structural stability In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact ''C''1-small perturbations). Examples of such q ...
*
Tuned mass damper A tuned mass damper (TMD), also known as a harmonic absorber or seismic damper, is a device mounted in structures to reduce mechanical vibrations, consisting of a mass mounted on one or more damped springs. Its oscillation frequency is tune ...
*
Vibration Vibration () is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the os ...
*
Vibrator (mechanical) A vibrator is a mechanical device to generate vibrations. The vibration is often generated by an electric motor with an unbalanced mass on its driveshaft. There are many different types of vibrator. Typically, they are components of larger pro ...


References


External links

*
Vibrations
 – a chapter from an online textbook {{Authority control