HOME

TheInfoList



OR:

Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of
group 15 A pnictogen ( or ; from grc, πνῑ́γω "to choke" and -gen, "generator") is any of the chemical elements in group 15 of the periodic table. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the ...
of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element. Nitrogen occurs in all organisms, primarily in amino acids (and thus proteins), in the nucleic acids ( DNA and RNA) and in the energy transfer molecule adenosine triphosphate. The human body contains about 3% nitrogen by mass, the fourth most abundant element in the body after oxygen, carbon, and hydrogen. The nitrogen cycle describes the movement of the element from the air, into the
biosphere The biosphere (from Greek βίος ''bíos'' "life" and σφαῖρα ''sphaira'' "sphere"), also known as the ecosphere (from Greek οἶκος ''oîkos'' "environment" and σφαῖρα), is the worldwide sum of all ecosystems. It can also ...
and organic compounds, then back into the atmosphere. Many industrially important compounds, such as ammonia, nitric acid, organic nitrates ( propellants and explosives), and cyanides, contain nitrogen. The extremely strong triple bond in elemental nitrogen (N≡N), the second strongest bond in any
diatomic molecule Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear. O ...
after carbon monoxide (CO), dominates nitrogen chemistry. This causes difficulty for both organisms and industry in converting N2 into useful compounds, but at the same time it means that burning, exploding, or decomposing nitrogen compounds to form nitrogen gas releases large amounts of often useful energy. Synthetically produced ammonia and nitrates are key industrial
fertiliser A fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from ...
s, and fertiliser nitrates are key
pollutant A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. These can be both naturally forming (i.e. minerals or extracted compounds like o ...
s in the eutrophication of water systems. It was first discovered and isolated by Scottish physician
Daniel Rutherford Daniel Rutherford (3 November 1749 – 15 December 1819) was a Scottish physician, chemist and botanist who is known for the isolation of nitrogen in 1772. Life Rutherford was born on 3 November 1749, the son of Anne Mackay and Professor John ...
in 1772. Although Carl Wilhelm Scheele and
Henry Cavendish Henry Cavendish ( ; 10 October 1731 – 24 February 1810) was an English natural philosopher and scientist who was an important experimental and theoretical chemist and physicist. He is noted for his discovery of hydrogen, which he termed "infl ...
had independently done so at about the same time, Rutherford is generally accorded the credit because his work was published first. The name ''nitrogène'' was suggested by French chemist Jean-Antoine-Claude Chaptal in 1790 when it was found that nitrogen was present in nitric acid and nitrates.
Antoine Lavoisier Antoine-Laurent de Lavoisier ( , ; ; 26 August 17438 May 1794),
CNRS (
asphyxiant gas An asphyxiant gas, also known as a simple asphyxiant, is a nontoxic or minimally toxic gas which reduces or displaces the normal oxygen concentration in breathing air. Breathing of oxygen-depleted air can lead to death by asphyxiation (suffocation ...
; this name is used in several languages, including French,
Italian Italian(s) may refer to: * Anything of, from, or related to the people of Italy over the centuries ** Italians, an ethnic group or simply a citizen of the Italian Republic or Italian Kingdom ** Italian language, a Romance language *** Regional Ita ...
,
Russian Russian(s) refers to anything related to Russia, including: *Russians (, ''russkiye''), an ethnic group of the East Slavic peoples, primarily living in Russia and neighboring countries *Rossiyane (), Russian language term for all citizens and peo ...
, Romanian,
Portuguese Portuguese may refer to: * anything of, from, or related to the country and nation of Portugal ** Portuguese cuisine, traditional foods ** Portuguese language, a Romance language *** Portuguese dialects, variants of the Portuguese language ** Portu ...
and Turkish, and appears in the English names of some nitrogen compounds such as hydrazine, azides and
azo compound Azo compounds are organic compounds bearing the functional group diazenyl (, in which R and R′ can be either aryl or alkyl groups). IUPAC defines azo compounds as: "Derivatives of diazene (diimide), , wherein both hydrogens are substituted ...
s. Apart from its use in fertilisers and energy stores, nitrogen is a constituent of organic compounds as diverse as
Kevlar Kevlar (para-aramid) is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora. Developed by Stephanie Kwolek at DuPont in 1965, the high-strength material was first used commercially in the early 1970s a ...
used in high-strength fabric and cyanoacrylate used in superglue. Nitrogen is a constituent of every major pharmacological drug class, including antibiotics. Many drugs are mimics or prodrugs of natural nitrogen-containing signal molecules: for example, the organic nitrates nitroglycerin and nitroprusside control blood pressure by metabolizing into nitric oxide. Many notable nitrogen-containing drugs, such as the natural caffeine and morphine or the synthetic amphetamines, act on receptors of animal neurotransmitters.


History

Nitrogen compounds have a very long history, ammonium chloride having been known to
Herodotus Herodotus ( ; grc, , }; BC) was an ancient Greek historian and geographer A geographer is a physical scientist, social scientist or humanist whose area of study is geography, the study of Earth's natural environment and human society ...
. They were well-known by the Middle Ages. Alchemists knew nitric acid as '' aqua fortis'' (strong water), as well as other nitrogen compounds such as ammonium salts and nitrate salts. The mixture of nitric and
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid Acid strength is the tendency of an acid, symbol ...
s was known as '' aqua regia'' (royal water), celebrated for its ability to dissolve gold, the king of metals. The discovery of nitrogen is attributed to the Scottish physician
Daniel Rutherford Daniel Rutherford (3 November 1749 – 15 December 1819) was a Scottish physician, chemist and botanist who is known for the isolation of nitrogen in 1772. Life Rutherford was born on 3 November 1749, the son of Anne Mackay and Professor John ...
in 1772, who called it ''noxious air''. Though he did not recognise it as an entirely different chemical substance, he clearly distinguished it from Joseph Black's "fixed air", or carbon dioxide. The fact that there was a component of air that does not support combustion was clear to Rutherford, although he was not aware that it was an element. Nitrogen was also studied at about the same time by Carl Wilhelm Scheele,
Henry Cavendish Henry Cavendish ( ; 10 October 1731 – 24 February 1810) was an English natural philosopher and scientist who was an important experimental and theoretical chemist and physicist. He is noted for his discovery of hydrogen, which he termed "infl ...
, and Joseph Priestley, who referred to it as ''burnt air'' or '' phlogisticated air''. French chemist
Antoine Lavoisier Antoine-Laurent de Lavoisier ( , ; ; 26 August 17438 May 1794),
CNRS (
mephitic air" or ''azote'', from the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
word (azotikos), "no life", due to it being asphyxiant. In an atmosphere of pure nitrogen, animals died and flames were extinguished. Though Lavoisier's name was not accepted in English since it was pointed out that all gases but oxygen are either asphyxiant or outright toxic, it is used in many languages (French, Italian, Portuguese, Polish, Russian, Albanian, Turkish, etc.; the German ''Stickstoff'' similarly refers to the same characteristic, viz. ''ersticken'' "to choke or suffocate") and still remains in English in the common names of many nitrogen compounds, such as hydrazine and compounds of the azide ion. Finally, it led to the name "
pnictogen A pnictogen ( or ; from grc, πνῑ́γω "to choke" and -gen, "generator") is any of the chemical elements in group 15 of the periodic table. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the el ...
s" for the group headed by nitrogen, from the Greek πνίγειν "to choke".Greenwood and Earnshaw, pp. 406–07 The English word nitrogen (1794) entered the language from the French ''nitrogène'', coined in 1790 by French chemist
Jean-Antoine Chaptal Jean-Antoine Chaptal, comte de Chanteloup (5 June 1756 – 30 July 1832) was a French chemist, physician, agronomist, industrialist, statesman, educator and philanthropist. His multifaceted career unfolded during one of the most brilliant periods ...
(1756–1832), from the French ''nitre'' (
potassium nitrate Potassium nitrate is a chemical compound with the chemical formula . This alkali metal nitrate salt is also known as Indian saltpetre (large deposits of which were historically mined in India). It is an ionic salt of potassium ions K+ and nitr ...
, also called
saltpeter Potassium nitrate is a chemical compound with the chemical formula . This alkali metal nitrate Salt (chemistry), salt is also known as Indian saltpetre (large deposits of which were historically mined in India). It is an ionic salt of potassium ...
) and the French suffix ''-gène'', "producing", from the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
-γενής (-genes, "begotten"). Chaptal's meaning was that nitrogen is the essential part of nitric acid, which in turn was produced from
nitre Niter or nitre is the mineral form of potassium nitrate, KNO3. It is a soft, white, highly soluble mineral found primarily in arid climates or cave deposits. Historically, the term ''niter'' was not well differentiated from natron, both of w ...
. In earlier times, niter had been confused with Egyptian "natron" ( sodium carbonate) – called νίτρον (nitron) in Greek – which, despite the name, contained no nitrate. The earliest military, industrial, and agricultural applications of nitrogen compounds used saltpeter ( sodium nitrate or potassium nitrate), most notably in
gunpowder Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, carbon (in the form of charcoal) and potassium nitrate (saltpeter). Th ...
, and later as
fertiliser A fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from ...
. In 1910,
Lord Rayleigh John William Strutt, 3rd Baron Rayleigh, (; 12 November 1842 – 30 June 1919) was an English mathematician and physicist who made extensive contributions to science. He spent all of his academic career at the University of Cambridge. Am ...
discovered that an electrical discharge in nitrogen gas produced "active nitrogen", a
monatomic In physics and chemistry, "monatomic" is a combination of the words "mono" and "atomic", and means "single atom". It is usually applied to gases: a monatomic gas is a gas in which atoms are not bound to each other. Examples at standard conditions ...
allotrope of nitrogen. The "whirling cloud of brilliant yellow light" produced by his apparatus reacted with mercury to produce explosive mercury nitride. For a long time, sources of nitrogen compounds were limited. Natural sources originated either from biology or deposits of nitrates produced by atmospheric reactions.
Nitrogen fixation Nitrogen fixation is a chemical process by which molecular nitrogen (), with a strong triple covalent bond, in the air is converted into ammonia () or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. Atmo ...
by industrial processes like the Frank–Caro process (1895–1899) and
Haber–Bosch process The Haber process, also called the Haber–Bosch process, is an artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today. It is named after its inventors, the German chemists Fritz Haber and C ...
(1908–1913) eased this shortage of nitrogen compounds, to the extent that half of global
food production The food industry is a complex, global network of diverse businesses that supplies most of the food consumed by the world's population. The food industry today has become highly diversified, with manufacturing ranging from small, traditiona ...
(see Applications) now relies on synthetic nitrogen fertilisers. At the same time, use of the
Ostwald process The Ostwald process is a chemical process used for making nitric acid (HNO3). Wilhelm Ostwald developed the process, and he patented it in 1902. The Ostwald process is a mainstay of the modern chemical industry, and it provides the main raw materi ...
(1902) to produce nitrates from industrial nitrogen fixation allowed the large-scale industrial production of nitrates as feedstock in the manufacture of explosives in the
World Wars A world war is an international conflict which involves all or most of the world's major powers. Conventionally, the term is reserved for two major international conflicts that occurred during the first half of the 20th century, World WarI (1914 ...
of the 20th century.


Properties


Atomic

A nitrogen atom has seven electrons. In the ground state, they are arranged in the electron configuration 1s2s2p2p2p. It, therefore, has five
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair form ...
s in the 2s and 2p orbitals, three of which (the p-electrons) are unpaired. It has one of the highest electronegativities among the elements (3.04 on the Pauling scale), exceeded only by
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
(3.16),
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
(3.44), and fluorine (3.98). (The light
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low ch ...
es,
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, neon, and
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as ...
, would presumably also be more electronegative, and in fact are on the Allen scale.) Following periodic trends, its single-bond
covalent radius The covalent radius, ''r''cov, is a measure of the size of an atom that forms part of one covalent bond. It is usually measured either in picometres (pm) or angstroms (Å), with 1 Å = 100 pm. In principle, the sum of the two coval ...
of 71 pm is smaller than those of boron (84 pm) and
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
(76 pm), while it is larger than those of oxygen (66 pm) and fluorine (57 pm). The
nitride In chemistry, a nitride is an inorganic compound of nitrogen. The "nitride" anion, N3- ion, is very elusive but compounds of nitride are numerous, although rarely naturally occuring. Some nitrides have a find applications, such as wear-resistant ...
anion, N3−, is much larger at 146 pm, similar to that of the oxide (O2−: 140 pm) and fluoride (F: 133 pm) anions. The first three ionisation energies of nitrogen are 1.402, 2.856, and 4.577 MJ·mol−1, and the sum of the fourth and fifth is . Due to these very high figures, nitrogen has no simple cationic chemistry.Greenwood and Earnshaw, p. 550 The lack of radial nodes in the 2p subshell is directly responsible for many of the anomalous properties of the first row of the
p-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ...
, especially in nitrogen, oxygen, and fluorine. The 2p subshell is very small and has a very similar radius to the 2s shell, facilitating orbital hybridisation. It also results in very large electrostatic forces of attraction between the nucleus and the valence electrons in the 2s and 2p shells, resulting in very high electronegativities. Hypervalency is almost unknown in the 2p elements for the same reason, because the high electronegativity makes it difficult for a small nitrogen atom to be a central atom in an electron-rich
three-center four-electron bond The 3-center 4-electron (3c–4e) bond is a model used to explain bonding in certain hypervalent molecules such as tetratomic and hexatomic interhalogen compounds, sulfur tetrafluoride, the xenon fluorides, and the bifluoride ion. It is also know ...
since it would tend to attract the electrons strongly to itself. Thus, despite nitrogen's position at the head of group 15 in the periodic table, its chemistry shows huge differences from that of its heavier congeners
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
,
arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, ...
,
antimony Antimony is a chemical element with the symbol Sb (from la, stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient t ...
, and
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
. Nitrogen may be usefully compared to its horizontal neighbours' carbon and oxygen as well as its vertical neighbours in the pnictogen column, phosphorus, arsenic, antimony, and bismuth. Although each period 2 element from lithium to oxygen shows some similarities to the period 3 element in the next group (from magnesium to chlorine; these are known as
diagonal relationship A diagonal relationship is said to exist between certain pairs of diagonally adjacent elements in the second and third periods (first 20 elements) of the periodic table. These pairs (lithium (Li) and magnesium (Mg), beryllium (Be) and aluminium ...
s), their degree drops off abruptly past the boron–silicon pair. The similarities of nitrogen to sulfur are mostly limited to sulfur nitride ring compounds when both elements are the only ones present. Nitrogen does not share the proclivity of carbon for catenation. Like carbon, nitrogen tends to form ionic or metallic compounds with metals. Nitrogen forms an extensive series of nitrides with carbon, including those with chain-, graphitic-, and fullerenic-like structures. It resembles oxygen with its high electronegativity and concomitant capability for hydrogen bonding and the ability to form
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as '' ligands'' or complexing agents. ...
es by donating its lone pairs of electrons. There are some parallels between the chemistry of ammonia NH3 and water H2O. For example, the capacity of both compounds to be protonated to give NH4+ and H3O+ or deprotonated to give NH2 and OH, with all of these able to be isolated in solid compounds. Nitrogen shares with both its horizontal neighbours a preference for forming multiple bonds, typically with carbon, oxygen, or other nitrogen atoms, through p''π''–p''π'' interactions. Thus, for example, nitrogen occurs as diatomic molecules and therefore has very much lower
melting Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
(−210 °C) and boiling points (−196 °C) than the rest of its group, as the N2 molecules are only held together by weak
van der Waals interaction In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and the ...
s and there are very few electrons available to create significant instantaneous dipoles. This is not possible for its vertical neighbours; thus, the nitrogen oxides, nitrites, nitrates, nitro-,
nitroso In organic chemistry, nitroso refers to a functional group in which the nitric oxide () group is attached to an organic moiety (chemistry), moiety. As such, various nitroso groups can be categorized as ''C''-nitroso compounds (e.g., nitrosoalkane ...
-, azo-, and diazo-compounds, azides,
cyanate Cyanate is an anion with the structural formula , usually written . It also refers to any salt containing it, such as ammonium cyanate. It is an isomer of the much less stable fulminate anion .William R. Martin and David W. Ball (2019): "Sma ...
s,
thiocyanate Thiocyanate (also known as rhodanide) is the anion . It is the conjugate base of thiocyanic acid. Common derivatives include the colourless salts potassium thiocyanate and sodium thiocyanate. Mercury(II) thiocyanate was formerly used in pyr ...
s, and
imino In organic chemistry, an imine ( or ) is a functional group or organic compound containing a carbon–nitrogen double bond (). The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bon ...
-derivatives find no echo with phosphorus, arsenic, antimony, or bismuth. By the same token, however, the complexity of the phosphorus oxoacids finds no echo with nitrogen. Setting aside their differences, nitrogen and phosphorus form an extensive series of compounds with one another; these have chain, ring, and cage structures. Table of thermal and physical properties of nitrogen (N2) at atmospheric pressure:


Isotopes

Nitrogen has two stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s: 14N and 15N. The first is much more common, making up 99.634% of natural nitrogen, and the second (which is slightly heavier) makes up the remaining 0.366%. This leads to an atomic weight of around 14.007 u.Greenwood and Earnshaw, pp. 411–12 Both of these stable isotopes are produced in the
CNO cycle The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, ...
in stars, but 14N is more common as its neutron capture is the rate-limiting step. 14N is one of the five stable odd–odd nuclides (a nuclide having an odd number of protons and neutrons); the other four are 2H, 6Li, 10B, and 180mTa. The relative abundance of 14N and 15N is practically constant in the atmosphere but can vary elsewhere, due to natural isotopic fractionation from biological
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
reactions and the evaporation of natural ammonia or nitric acid. Biologically mediated reactions (e.g., assimilation,
nitrification ''Nitrification'' is the biological oxidation of ammonia to nitrite followed by the oxidation of the nitrite to nitrate occurring through separate organisms or direct ammonia oxidation to nitrate in comammox bacteria. The transformation of am ...
, and
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
) strongly control nitrogen dynamics in the soil. These reactions typically result in 15N enrichment of the substrate and depletion of the
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
. The heavy isotope 15N was first discovered by S. M. Naudé in 1929, and soon after heavy isotopes of the neighbouring elements
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
and
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
were discovered.Greenwood and Earnshaw, p. 408 It presents one of the lowest thermal neutron capture cross-sections of all isotopes. It is frequently used in
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
(NMR) spectroscopy to determine the structures of nitrogen-containing molecules, due to its fractional nuclear spin of one-half, which offers advantages for NMR such as narrower line width. 14N, though also theoretically usable, has an integer nuclear spin of one and thus has a
quadrupole moment A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure ref ...
that leads to wider and less useful spectra. 15N NMR nevertheless has complications not encountered in the more common 1H and 13C NMR spectroscopy. The low natural abundance of 15N (0.36%) significantly reduces sensitivity, a problem which is only exacerbated by its low gyromagnetic ratio, (only 10.14% that of 1H). As a result, the signal-to-noise ratio for 1H is about 300 times as much as that for 15N at the same magnetic field strength. This may be somewhat alleviated by isotopic enrichment of 15N by chemical exchange or fractional distillation. 15N-enriched compounds have the advantage that under standard conditions, they do not undergo chemical exchange of their nitrogen atoms with atmospheric nitrogen, unlike compounds with labelled
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
, carbon, and oxygen isotopes that must be kept away from the atmosphere. The 15N:14N ratio is commonly used in stable isotope analysis in the fields of
geochemistry Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the ...
,
hydrology Hydrology () is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and environmental watershed sustainability. A practitioner of hydrology is call ...
,
paleoclimatology Paleoclimatology (American and British English spelling differences, British spelling, palaeoclimatology) is the study of climates for which direct measurements were not taken. As instrumental records only span a tiny part of Earth's history, the ...
and
paleoceanography Paleoceanography is the study of the history of the oceans in the geologic past with regard to circulation, chemistry, biology, geology and patterns of sedimentation and biological productivity. Paleoceanographic studies using environment models ...
, where it is called ''δ''15N. Of the ten other isotopes produced synthetically, ranging from 12N to 23N, 13N has a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of ten minutes and the remaining isotopes have half-lives on the order of seconds (16N and 17N) or milliseconds. No other nitrogen isotopes are possible as they would fall outside the
nuclear drip line The nuclear drip line is the boundary beyond which atomic nuclei decay by the emission of a proton or neutron. An arbitrary combination of protons and neutrons does not necessarily yield a stable nucleus. One can think of moving up and/or to ...
s, leaking out a proton or neutron. Given the half-life difference, 13N is the most important nitrogen radioisotope, being relatively long-lived enough to use in positron emission tomography (PET), although its half-life is still short and thus it must be produced at the venue of the PET, for example in a
cyclotron A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Jan ...
via proton bombardment of 16O producing 13N and an
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pr ...
. The
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
16N is the dominant radionuclide in the coolant of
pressurised water reactor A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan and Canada). In a PWR, the primary coolant (water) is ...
s or
boiling water reactor A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is a design different from a Soviet graphite-moderated RBMK. It is the second most common type of electricity-generating nu ...
s during normal operation. It is produced from 16O (in water) via an (n,p) reaction, in which the 16O atom captures a neutron and expels a proton. It has a short half-life of about 7.1 s, but during its decay back to 16O produces high-energy gamma radiation (5 to 7 MeV). Because of this, access to the primary coolant piping in a pressurised water reactor must be restricted during reactor power operation. It is a sensitive and immediate indicator of leaks from the primary coolant system to the secondary steam cycle and is the primary means of detection for such leaks.


Chemistry and compounds


Allotropes

Atomic nitrogen, also known as active nitrogen, is highly reactive, being a triradical with three unpaired electrons. Free nitrogen atoms easily react with most elements to form nitrides, and even when two free nitrogen atoms collide to produce an excited N2 molecule, they may release so much energy on collision with even such stable molecules as
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
and
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
to cause homolytic fission into radicals such as CO and O or OH and H. Atomic nitrogen is prepared by passing an electric discharge through nitrogen gas at 0.1–2 mmHg, which produces atomic nitrogen along with a peach-yellow emission that fades slowly as an afterglow for several minutes even after the discharge terminates.Greenwood and Earnshaw, pp. 412–16 Given the great reactivity of atomic nitrogen, elemental nitrogen usually occurs as molecular N2, dinitrogen. This molecule is a colourless, odourless, and tasteless
diamagnetic Diamagnetic materials are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracted ...
gas at standard conditions: it melts at −210 °C and boils at −196 °C. Dinitrogen is mostly unreactive at room temperature, but it will nevertheless react with
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
metal and some
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that ca ...
complexes. This is due to its bonding, which is unique among the diatomic elements at standard conditions in that it has an N≡N triple bond. Triple bonds have short bond lengths (in this case, 109.76 pm) and high dissociation energies (in this case, 945.41 kJ/mol), and are thus very strong, explaining dinitrogen's low level of chemical reactivity. Other nitrogen
oligomers In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
and polymers may be possible. If they could be synthesised, they may have potential applications as materials with a very high energy density, that could be used as powerful propellants or explosives. Under extremely high pressures (1.1 million  atm) and high temperatures (2000 K), as produced in a
diamond anvil cell A diamond anvil cell (DAC) is a high-pressure device used in geology, engineering, and materials science experiments. It enables the compression of a small (sub-millimeter-sized) piece of material to extreme pressures, typically up to around 1 ...
, nitrogen polymerises into the single-bonded
cubic gauche Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
crystal structure. This structure is similar to that of
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, ...
, and both have extremely strong covalent bonds, resulting in its nickname "nitrogen diamond". At
atmospheric pressure Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, ...
, molecular nitrogen
condenses Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapor to ...
( liquefies) at 77  K (−195.79 ° C) and
freezes Freezing is a phase transition where a liquid turns into a solid when its temperature is lowered below its freezing point. In accordance with the internationally established definition, freezing means the solidification phase change of a liquid o ...
at 63 K (−210.01 °C) into the beta
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occu ...
crystal
allotropic Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: th ...
form. Below 35.4 K (−237.6 °C) nitrogen assumes the cubic crystal allotropic form (called the alpha phase). Liquid nitrogen, a colourless fluid resembling water in appearance, but with 80.8% of the density (the density of liquid nitrogen at its boiling point is 0.808 g/mL), is a common
cryogen In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
.
Solid nitrogen Solid nitrogen is a number of solid forms of the element nitrogen, first observed in 1884. Solid nitrogen is mainly the subject of academic research, but low-temperature, low-pressure solid nitrogen is a substantial component of bodies in the ou ...
has many crystalline modifications. It forms a significant dynamic surface coverage on Pluto and outer moons of the Solar System such as Triton. Even at the low temperatures of solid nitrogen it is fairly volatile and can sublime to form an atmosphere, or condense back into nitrogen frost. It is very weak and flows in the form of glaciers and on Triton geysers of nitrogen gas come from the polar ice cap region.


Dinitrogen complexes

The first example of a
dinitrogen complex Transition metal dinitrogen complexes are coordination compounds that contain transition metals as ion centers the dinitrogen molecules (N2) as ligands. Historical background Transition metal complexes of N2 have been studied since 1965 when ...
to be discovered was u(NH3)5(N2)sup>2+ (see figure at right), and soon many other such complexes were discovered. These complexes, in which a nitrogen molecule donates at least one lone pair of electrons to a central metal cation, illustrate how N2 might bind to the metal(s) in
nitrogenase Nitrogenases are enzymes () that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the reduction of nitrogen (N2) to ammonia (NH3). Nitrogenases are the only fa ...
and the
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
for the
Haber process The Haber process, also called the Haber–Bosch process, is an artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today. It is named after its inventors, the German chemists Fritz Haber and ...
: these processes involving dinitrogen activation are vitally important in biology and in the production of fertilisers. Dinitrogen is able to coordinate to metals in five different ways. The more well-characterised ways are the end-on M←N≡N ('' η''1) and M←N≡N→M ('' μ'', bis-''η''1), in which the lone pairs on the nitrogen atoms are donated to the metal cation. The less well-characterised ways involve dinitrogen donating electron pairs from the triple bond, either as a
bridging ligand In coordination chemistry, a bridging ligand is a ligand that connects two or more atoms, usually metal ions. The ligand may be atomic or polyatomic. Virtually all complex organic compounds can serve as bridging ligands, so the term is usually ...
to two metal cations (''μ'', bis-''η''2) or to just one (''η''2). The fifth and unique method involves triple-coordination as a bridging ligand, donating all three electron pairs from the triple bond (''μ''3-N2). A few complexes feature multiple N2 ligands and some feature N2 bonded in multiple ways. Since N2 is isoelectronic with carbon monoxide (CO) and acetylene (C2H2), the bonding in dinitrogen complexes is closely allied to that in
carbonyl In organic chemistry, a carbonyl group is a functional group composed of a carbon atom double-bonded to an oxygen atom: C=O. It is common to several classes of organic compounds, as part of many larger functional groups. A compound containi ...
compounds, although N2 is a weaker ''σ''-donor and ''π''-acceptor than CO. Theoretical studies show that ''σ'' donation is a more important factor allowing the formation of the M–N bond than ''π'' back-donation, which mostly only weakens the N–N bond, and end-on (''η''1) donation is more readily accomplished than side-on (''η''2) donation. Today, dinitrogen complexes are known for almost all the
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that ca ...
s, accounting for several hundred compounds. They are normally prepared by three methods: # Replacing labile ligands such as H2O, H, or CO directly by nitrogen: these are often reversible reactions that proceed at mild conditions. # Reducing metal complexes in the presence of a suitable co-ligand in excess under nitrogen gas. A common choice includes replacing chloride ligands with dimethylphenylphosphine (PMe2Ph) to make up for the smaller number of nitrogen ligands attached to the original chlorine ligands. # Converting a ligand with N–N bonds, such as hydrazine or azide, directly into a dinitrogen ligand. Occasionally the N≡N bond may be formed directly within a metal complex, for example by directly reacting coordinated ammonia (NH3) with
nitrous acid Nitrous acid (molecular formula ) is a weak and monoprotic acid known only in solution, in the gas phase and in the form of nitrite () salts. Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagent ...
(HNO2), but this is not generally applicable. Most dinitrogen complexes have colours within the range white-yellow-orange-red-brown; a few exceptions are known, such as the blue sub>2-(N2)


Nitrides, azides, and nitrido complexes

Nitrogen bonds to almost all the elements in the periodic table except the first three
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low ch ...
es,
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, neon, and
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as ...
, and some of the very short-lived elements after
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
, creating an immense variety of binary compounds with varying properties and applications in which
pentazenium tetraazidoborate Pentazenium tetraazidoborate is an extremely unstable chemical compound with the formula N5 (N3)4 It is a white solid that violently explodes at room temperature. This compound has a 95.7% nitrogen content which is the highest known of a chemical ...
has the highest nitrogen content. Many binary compounds are known: with the exception of the nitrogen hydrides, oxides, and fluorides, these are typically called
nitride In chemistry, a nitride is an inorganic compound of nitrogen. The "nitride" anion, N3- ion, is very elusive but compounds of nitride are numerous, although rarely naturally occuring. Some nitrides have a find applications, such as wear-resistant ...
s. Many stoichiometric phases are usually present for most elements (e.g. MnN, Mn6N5, Mn3N2, Mn2N, Mn4N, and Mn''x''N for 9.2 < ''x'' < 25.3). They may be classified as "salt-like" (mostly ionic), covalent, "diamond-like", and metallic (or
interstitial An interstitial space or interstice is a space between structures or objects. In particular, interstitial may refer to: Biology * Interstitial cell tumor * Interstitial cell, any cell that lies between other cells * Interstitial collagenase ...
), although this classification has limitations generally stemming from the continuity of bonding types instead of the discrete and separate types that it implies. They are normally prepared by directly reacting a metal with nitrogen or ammonia (sometimes after heating), or by
thermal decomposition Thermal decomposition, or thermolysis, is a chemical decomposition caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic as heat is re ...
of metal amides:Greenwood and Earnshaw, pp. 417–20 :3 Ca + N2 → Ca3N2 :3 Mg + 2 NH3 → Mg3N2 + 3 H2 (at 900 °C) :3 Zn(NH2)2 → Zn3N2 + 4 NH3 Many variants on these processes are possible. The most ionic of these nitrides are those of the alkali metals and
alkaline earth metal The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are all ...
s, Li3N (Na, K, Rb, and Cs do not form stable nitrides for steric reasons) and M3N2 (M = Be, Mg, Ca, Sr, Ba). These can formally be thought of as salts of the N3− anion, although charge separation is not actually complete even for these highly electropositive elements. However, the alkali metal azides NaN3 and KN3, featuring the linear anion, are well-known, as are Sr(N3)2 and Ba(N3)2. Azides of the B-subgroup metals (those in groups 11 through 16) are much less ionic, have more complicated structures, and detonate readily when shocked. Many covalent binary nitrides are known. Examples include
cyanogen Cyanogen is the chemical compound with the formula ( C N)2. It is a colorless and highly toxic gas with a pungent odor. The molecule is a pseudohalogen. Cyanogen molecules consist of two CN groups – analogous to diatomic halogen molecu ...
((CN)2),
triphosphorus pentanitride Triphosphorus pentanitride is an inorganic compound with the chemical formula . Containing only phosphorus and nitrogen, this material is classified as a binary nitride. While it has been investigated for various applications this has not led to ...
(P3N5),
disulfur dinitride Disulfur dinitride is the chemical compound with the formula . Preparation and reactions Passing gaseous over silver metal wool at 250–300 °C at low pressure (1mm Hg) yields cyclic . The silver reacts with the sulfur produced by the the ...
(S2N2), and
tetrasulfur tetranitride Tetrasulfur tetranitride is an inorganic compound with the formula . This gold-poppy coloured solid is the most important binary sulfur nitride, which are compounds that contain only the elements sulfur and nitrogen. It is a precursor to many S-N ...
(S4N4). The essentially covalent
silicon nitride Silicon nitride is a chemical compound of the elements silicon and nitrogen. is the most thermodynamically stable and commercially important of the silicon nitrides, and the term "silicon nitride" commonly refers to this specific composition. It ...
(Si3N4) and germanium nitride (Ge3N4) are also known: silicon nitride, in particular, would make a promising
ceramic A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain ...
if not for the difficulty of working with and sintering it. In particular, the group 13 nitrides, most of which are promising
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
s, are isoelectronic with graphite, diamond, and
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal s ...
and have similar structures: their bonding changes from covalent to partially ionic to metallic as the group is descended. In particular, since the B–N unit is isoelectronic to C–C, and carbon is essentially intermediate in size between boron and nitrogen, much of
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, ...
finds an echo in boron–nitrogen chemistry, such as in borazine ("inorganic
benzene Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms ...
"). Nevertheless, the analogy is not exact due to the ease of
nucleophilic In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are ...
attack at boron due to its deficiency in electrons, which is not possible in a wholly carbon-containing ring. The largest category of nitrides are the interstitial nitrides of formulae MN, M2N, and M4N (although variable composition is perfectly possible), where the small nitrogen atoms are positioned in the gaps in a metallic cubic or
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occu ...
lattice. They are opaque, very hard, and chemically inert, melting only at very high temperatures (generally over 2500 °C). They have a metallic lustre and conduct electricity as do metals. They hydrolyse only very slowly to give ammonia or nitrogen. The nitride anion (N3−) is the strongest ''π'' donor known among ligands (the second-strongest is O2−). Nitrido complexes are generally made by the thermal decomposition of azides or by deprotonating ammonia, and they usually involve a terminal 3− group. The linear azide anion (), being isoelectronic with
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and has ...
,
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
, and
cyanate Cyanate is an anion with the structural formula , usually written . It also refers to any salt containing it, such as ammonium cyanate. It is an isomer of the much less stable fulminate anion .William R. Martin and David W. Ball (2019): "Sma ...
, forms many coordination complexes. Further catenation is rare, although (isoelectronic with
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
and nitrate) is known.


Hydrides

Industrially, ammonia (NH3) is the most important compound of nitrogen and is prepared in larger amounts than any other compound because it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilisers. It is a colourless alkaline gas with a characteristic pungent smell. The presence of
hydrogen bonding In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a l ...
has very significant effects on ammonia, conferring on it its high melting (−78 °C) and boiling (−33 °C) points. As a liquid, it is a very good solvent with a high heat of vaporisation (enabling it to be used in vacuum flasks), that also has a low viscosity and electrical conductivity and high dielectric constant, and is less dense than water. However, the hydrogen bonding in NH3 is weaker than that in H2O due to the lower electronegativity of nitrogen compared to oxygen and the presence of only one lone pair in NH3 rather than two in H2O. It is a weak base in aqueous solution ( p''K''''b'' 4.74); its conjugate acid is ammonium, . It can also act as an extremely weak acid, losing a proton to produce the amide anion, . It thus undergoes self-dissociation, similar to water, to produce ammonium and amide. Ammonia burns in air or oxygen, though not readily, to produce nitrogen gas; it burns in fluorine with a greenish-yellow flame to give nitrogen trifluoride. Reactions with the other nonmetals are very complex and tend to lead to a mixture of products. Ammonia reacts on heating with metals to give nitrides.Greenwood and Earnshaw, pp. 420–26 Many other binary nitrogen hydrides are known, but the most important are hydrazine (N2H4) and
hydrogen azide Hydrazoic acid, also known as hydrogen azide or azoimide, This also contains a detailed description of the contemporaneous production process. is a compound with the chemical formula . It is a colorless, volatile, and explosive liquid at room tem ...
(HN3). Although it is not a nitrogen hydride,
hydroxylamine Hydroxylamine is an inorganic compound with the formula . The material is a white crystalline, hygroscopic compound.Greenwood and Earnshaw. ''Chemistry of the Elements.'' 2nd Edition. Reed Educational and Professional Publishing Ltd. pp. 431–43 ...
(NH2OH) is similar in properties and structure to ammonia and hydrazine as well. Hydrazine is a fuming, colourless liquid that smells similar to ammonia. Its physical properties are very similar to those of water (melting point 2.0 °C, boiling point 113.5 °C, density 1.00 g/cm3). Despite it being an endothermic compound, it is kinetically stable. It burns quickly and completely in air very exothermically to give nitrogen and water vapour. It is a very useful and versatile reducing agent and is a weaker base than ammonia. It is also commonly used as a rocket fuel. Hydrazine is generally made by reaction of ammonia with alkaline
sodium hypochlorite Sodium hypochlorite (commonly known in a dilute solution as bleach) is an inorganic chemical compound with the formula NaOCl (or NaClO), comprising a sodium cation () and a hypochlorite anion (or ). It may also be viewed as the sodium s ...
in the presence of gelatin or glue:Greenwood and Earnshaw, pp. 426–33 :NH3 + OCl → NH2Cl + OH :NH2Cl + NH3 → + Cl (slow) : + OH → N2H4 + H2O (fast) (The attacks by hydroxide and ammonia may be reversed, thus passing through the intermediate NHCl instead.) The reason for adding gelatin is that it removes metal ions such as Cu2+ that catalyses the destruction of hydrazine by reaction with monochloramine (NH2Cl) to produce ammonium chloride and nitrogen.
Hydrogen azide Hydrazoic acid, also known as hydrogen azide or azoimide, This also contains a detailed description of the contemporaneous production process. is a compound with the chemical formula . It is a colorless, volatile, and explosive liquid at room tem ...
(HN3) was first produced in 1890 by the oxidation of aqueous hydrazine by nitrous acid. It is very explosive and even dilute solutions can be dangerous. It has a disagreeable and irritating smell and is a potentially lethal (but not cumulative) poison. It may be considered the conjugate acid of the azide anion, and is similarly analogous to the
hydrohalic acid In chemistry, hydrogen halides (hydrohalic acids when in the aqueous phase) are diatomic, inorganic compounds that function as Arrhenius acids. The formula is HX where X is one of the halogens: fluorine, chlorine, bromine, iodine, or astatine. A ...
s.


Halides and oxohalides

All four simple nitrogen trihalides are known. A few mixed halides and hydrohalides are known, but are mostly unstable; examples include NClF2, NCl2F, NBrF2, NF2H, NFH2, NCl2H, and NClH2.Greenwood and Earnshaw, pp. 438–42 Five nitrogen fluorides are known. Nitrogen trifluoride (NF3, first prepared in 1928) is a colourless and odourless gas that is thermodynamically stable, and most readily produced by the electrolysis of molten
ammonium fluoride Ammonium fluoride is the inorganic compound with the formula NH4F. It crystallizes as small colourless prisms, having a sharp saline taste, and is highly soluble in water. Like all fluoride salts, it is moderately toxic in both acute and chronic o ...
dissolved in anhydrous hydrogen fluoride. Like
carbon tetrafluoride Tetrafluoromethane, also known as carbon tetrafluoride or R-14, is the simplest perfluorocarbon ( C F4). As its IUPAC name indicates, tetrafluoromethane is the perfluorinated counterpart to the hydrocarbon methane. It can also be classified as a ...
, it is not at all reactive and is stable in water or dilute aqueous acids or alkalis. Only when heated does it act as a fluorinating agent, and it reacts with
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
, arsenic, antimony, and bismuth on contact at high temperatures to give
tetrafluorohydrazine Tetrafluorohydrazine or perfluorohydrazine, , is a colourless, reactive inorganic gas. It is a fluorinated analog of hydrazine. It is a highly hazardous chemical that explodes in the presence of organic materials. Tetrafluorohydrazine is manufac ...
(N2F4). The cations and are also known (the latter from reacting tetrafluorohydrazine with strong fluoride-acceptors such as
arsenic pentafluoride Arsenic pentafluoride is a chemical compound of arsenic and fluorine. It is a toxic, colorless gas. The oxidation state of arsenic is +5. Synthesis Arsenic pentafluoride can be prepared by direct combination of arsenic and fluorine: :2As + 5F2 � ...
), as is ONF3, which has aroused interest due to the short N–O distance implying partial double bonding and the highly polar and long N–F bond. Tetrafluorohydrazine, unlike hydrazine itself, can dissociate at room temperature and above to give the radical NF2•.
Fluorine azide Fluorine azide or triazadienyl fluoride is a yellow green gas composed of nitrogen and fluorine with formula . It is counted as an interhalogen compound, as the azide functional group is termed a pseudohalogen. It resembles , , and in this resp ...
(FN3) is very explosive and thermally unstable.
Dinitrogen difluoride Dinitrogen difluoride is a chemical compound with the formula N2F2. It is a gas at room temperature, and was first identified in 1952 as the thermal decomposition product of the azide N3F. It has the structure F−N=N−F and exists in both a ' ...
(N2F2) exists as thermally interconvertible ''cis'' and ''trans'' isomers, and was first found as a product of the thermal decomposition of FN3. Nitrogen trichloride (NCl3) is a dense, volatile, and explosive liquid whose physical properties are similar to those of carbon tetrachloride, although one difference is that NCl3 is easily hydrolysed by water while CCl4 is not. It was first synthesised in 1811 by
Pierre Louis Dulong Pierre Louis Dulong FRS FRSE (; ; 12 February 1785 – 19 July 1838) was a French physicist and chemist. He is remembered today largely for the law of Dulong and Petit, although he was much-lauded by his contemporaries for his studies into ...
, who lost three fingers and an eye to its explosive tendencies. As a dilute gas it is less dangerous and is thus used industrially to bleach and sterilise flour. Nitrogen tribromide (NBr3), first prepared in 1975, is a deep red, temperature-sensitive, volatile solid that is explosive even at −100 °C. Nitrogen triiodide (NI3) is still more unstable and was only prepared in 1990. Its adduct with ammonia, which was known earlier, is very shock-sensitive: it can be set off by the touch of a feather, shifting air currents, or even
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pr ...
s. For this reason, small amounts of nitrogen triiodide are sometimes synthesised as a demonstration to high school chemistry students or as an act of "chemical magic". Chlorine azide (ClN3) and bromine azide (BrN3) are extremely sensitive and explosive. Two series of nitrogen oxohalides are known: the nitrosyl halides (XNO) and the nitryl halides (XNO2). The first is very reactive gases that can be made by directly halogenating nitrous oxide. Nitrosyl fluoride (NOF) is colourless and a vigorous fluorinating agent.
Nitrosyl chloride Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid. It is a st ...
(NOCl) behaves in much the same way and has often been used as an ionising solvent. Nitrosyl bromide (NOBr) is red. The reactions of the nitryl halides are mostly similar:
nitryl fluoride Nitryl fluoride, NO2F, is a colourless gas and strong oxidizing agent, which is used as a fluorinating agent and has been proposed as an oxidiser in rocket propellants (though never flown). It is a molecular species, not ionic, consistent with it ...
(FNO2) and nitryl chloride (ClNO2) are likewise reactive gases and vigorous halogenating agents.


Oxides

Nitrogen forms nine molecular oxides, some of which were the first gases to be identified: N2O (
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and has ...
), NO ( nitric oxide), N2O3 (
dinitrogen trioxide Dinitrogen trioxide is the chemical compound with the formula N2O3. It is one of the simple nitrogen oxides. It forms upon mixing equal parts of nitric oxide and nitrogen dioxide and cooling the mixture below −21 °C (−6 °F): :NO + ...
), NO2 (
nitrogen dioxide Nitrogen dioxide is a chemical compound with the formula . It is one of several nitrogen oxides. is an intermediate in the industrial synthesis of nitric acid, millions of tons of which are produced each year for use primarily in the productio ...
), N2O4 ( dinitrogen tetroxide), N2O5 (
dinitrogen pentoxide Dinitrogen pentoxide is the chemical compound with the formula , also known as nitrogen pentoxide or nitric anhydride. It is one of the binary nitrogen oxides, a family of compounds that only contain nitrogen and oxygen. It exists as colourless c ...
), N4O (
nitrosylazide Nitrosyl azide is a highly labile nitrogen oxide with chemical formula . Synthesis Nitrosyl azide can be synthesized via the following reaction of sodium azide and nitrosyl chloride at low temperatures: : Properties Below −50 °C, ...
),Greenwood and Earnshaw, pp. 443–58 and N(NO2)3 (
trinitramide Trinitramide is a compound of nitrogen and oxygen with the molecular formula N(NO2)3. The compound was detected and described in 2010 by researchers at the Royal Institute of Technology (KTH) in Sweden. It is made of a nitrogen atom bonded to thre ...
). All are thermally unstable towards decomposition to their elements. One other possible oxide that has not yet been synthesised is
oxatetrazole A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic chemistry is the branch of organic chemistry dealing with the synthesis, properties, an ...
(N4O), an aromatic ring. Nitrous oxide (N2O), better known as laughing gas, is made by thermal decomposition of molten
ammonium nitrate Ammonium nitrate is a chemical compound with the chemical formula . It is a white crystalline salt consisting of ions of ammonium and nitrate. It is highly soluble in water and hygroscopic as a solid, although it does not form hydrates. It is ...
at 250 °C. This is a redox reaction and thus nitric oxide and nitrogen are also produced as byproducts. It is mostly used as a propellant and aerating agent for sprayed canned whipped cream, and was formerly commonly used as an anaesthetic. Despite appearances, it cannot be considered to be the
anhydride An organic acid anhydride is an acid anhydride that is an organic compound. An acid anhydride is a compound that has two acyl groups bonded to the same oxygen atom. A common type of organic acid anhydride is a carboxylic anhydride, where the pa ...
of
hyponitrous acid Hyponitrous acid is a chemical compound with formula or HON=NOH. It is an isomer of nitramide, H2N−NO2; and a formal dimer of azanone, HNO. Hyponitrous acid forms two series of salts, the hyponitrites containing the N=NOsup>2− anion, and t ...
(H2N2O2) because that acid is not produced by the dissolution of nitrous oxide in water. It is rather unreactive (not reacting with the halogens, the alkali metals, or
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
at room temperature, although reactivity increases upon heating) and has the unsymmetrical structure N–N–O (N≡N+ON=N+=O): above 600 °C it dissociates by breaking the weaker N–O bond. Nitric oxide (NO) is the simplest stable molecule with an odd number of electrons. In mammals, including humans, it is an important cellular
signaling molecule In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a Cell (biology), cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property ...
involved in many physiological and pathological processes. It is formed by catalytic oxidation of ammonia. It is a colourless paramagnetic gas that, being thermodynamically unstable, decomposes to nitrogen and oxygen gas at 1100–1200 °C. Its bonding is similar to that in nitrogen, but one extra electron is added to a ''π''* antibonding orbital and thus the bond order has been reduced to approximately 2.5; hence dimerisation to O=N–N=O is unfavourable except below the boiling point (where the ''cis'' isomer is more stable) because it does not actually increase the total bond order and because the unpaired electron is delocalised across the NO molecule, granting it stability. There is also evidence for the asymmetric red dimer O=N–O=N when nitric oxide is condensed with polar molecules. It reacts with oxygen to give brown nitrogen dioxide and with halogens to give nitrosyl halides. It also reacts with transition metal compounds to give nitrosyl complexes, most of which are deeply coloured. Blue dinitrogen trioxide (N2O3) is only available as a solid because it rapidly dissociates above its melting point to give nitric oxide, nitrogen dioxide (NO2), and dinitrogen tetroxide (N2O4). The latter two compounds are somewhat difficult to study individually because of the equilibrium between them, although sometimes dinitrogen tetroxide can react by heterolytic fission to nitrosonium and nitrate in a medium with high dielectric constant. Nitrogen dioxide is an acrid, corrosive brown gas. Both compounds may be easily prepared by decomposing a dry metal nitrate. Both react with water to form nitric acid. Dinitrogen tetroxide is very useful for the preparation of anhydrous metal nitrates and nitrato complexes, and it became the storable oxidiser of choice for many rockets in both the United States and
USSR The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nationa ...
by the late 1950s. This is because it is a hypergolic propellant in combination with a hydrazine-based
rocket fuel Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical ...
and can be easily stored since it is liquid at room temperature. The thermally unstable and very reactive dinitrogen pentoxide (N2O5) is the anhydride of nitric acid, and can be made from it by dehydration with
phosphorus pentoxide Phosphorus pentoxide is a chemical compound with molecular formula P4 O10 (with its common name derived from its empirical formula, P2O5). This white crystalline solid is the anhydride of phosphoric acid. It is a powerful desiccant and dehydra ...
. It is of interest for the preparation of explosives. It is a
deliquescent Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance' ...
, colourless crystalline solid that is sensitive to light. In the solid state it is ionic with structure O2sup>+ O3sup>−; as a gas and in solution it is molecular O2N–O–NO2. Hydration to nitric acid comes readily, as does analogous reaction with
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%� ...
giving
peroxonitric acid Peroxynitric acid or peroxonitric acid is a chemical compound with the formula . It is an oxyacid of nitrogen, after peroxynitrous acid. Preparation Peroxynitrate, the conjugate base of peroxynitric acid, is formed rapidly during decomposition o ...
(HOONO2). It is a violent oxidising agent. Gaseous dinitrogen pentoxide decomposes as follows: :N2O5 NO2 + NO3 → NO2 + O2 + NO :N2O5 + NO 3 NO2


Oxoacids, oxoanions, and oxoacid salts

Many nitrogen
oxoacid An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce ...
s are known, though most of them are unstable as pure compounds and are known only as aqueous solutions or as salts.
Hyponitrous acid Hyponitrous acid is a chemical compound with formula or HON=NOH. It is an isomer of nitramide, H2N−NO2; and a formal dimer of azanone, HNO. Hyponitrous acid forms two series of salts, the hyponitrites containing the N=NOsup>2− anion, and t ...
(H2N2O2) is a weak diprotic acid with the structure HON=NOH (p''K''a1 6.9, p''K''a2 11.6). Acidic solutions are quite stable but above pH 4 base-catalysed decomposition occurs via ONNOsup>− to nitrous oxide and the hydroxide anion.
Hyponitrite In chemistry, hyponitrite may refer to the anion ( N=NOsup>2−), or to any ionic compound that contains it. In organic chemistry, it may also refer to the group −O−N=N−O−, or any organic compound with the generic formula R1−O−N=N� ...
s (involving the anion) are stable to reducing agents and more commonly act as reducing agents themselves. They are an intermediate step in the oxidation of ammonia to nitrite, which occurs in the nitrogen cycle. Hyponitrite can act as a bridging or chelating bidentate ligand.Greenwood and Earnshaw, pp. 459–72
Nitrous acid Nitrous acid (molecular formula ) is a weak and monoprotic acid known only in solution, in the gas phase and in the form of nitrite () salts. Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagent ...
(HNO2) is not known as a pure compound, but is a common component in gaseous equilibria and is an important aqueous reagent: its aqueous solutions may be made from acidifying cool aqueous nitrite (, bent) solutions, although already at room temperature disproportionation to nitrate and nitric oxide is significant. It is a weak acid with p''K''''a'' 3.35 at 18 °C. They may be titrimetrically analysed by their oxidation to nitrate by
permanganate A permanganate () is a chemical compound containing the manganate(VII) ion, , the conjugate base of permanganic acid. Because the manganese atom is in the +7 oxidation state, the permanganate(VII) ion is a strong oxidizing agent. The ion is a tr ...
. They are readily reduced to nitrous oxide and nitric oxide by sulfur dioxide, to hyponitrous acid with
tin Tin is a chemical element with the symbol Sn (from la, stannum) and atomic number 50. Tin is a silvery-coloured metal. Tin is soft enough to be cut with little force and a bar of tin can be bent by hand with little effort. When bent, t ...
(II), and to ammonia with hydrogen sulfide. Salts of
hydrazinium Hydrazinium is the cation with the formula . This cation has a methylamine-like structure (). It can be derived from hydrazine by protonation (treatment with a strong acid). Hydrazinium is a weak acid with p''K''a = 8.1. Salts of hydrazinium ar ...
react with nitrous acid to produce azides which further react to give nitrous oxide and nitrogen.
Sodium nitrite Sodium nitrite is an inorganic compound with the chemical formula NaNO2. It is a white to slightly yellowish crystalline powder that is very soluble in water and is hygroscopic. From an industrial perspective, it is the most important nitrite ...
is mildly toxic in concentrations above 100 mg/kg, but small amounts are often used to cure meat and as a preservative to avoid bacterial spoilage. It is also used to synthesise hydroxylamine and to diazotise primary aromatic amines as follows: :ArNH2 + HNO2rNNl + 2 H2O Nitrite is also a common ligand that can coordinate in five ways. The most common are nitro (bonded from the nitrogen) and nitrito (bonded from an oxygen). Nitro-nitrito isomerism is common, where the nitrito form is usually less stable.
Nitric acid Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available nitri ...
(HNO3) is by far the most important and the most stable of the nitrogen oxoacids. It is one of the three most used acids (the other two being sulfuric acid and
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid Acid strength is the tendency of an acid, symbol ...
) and was first discovered by alchemists in the 13th century. It is made by the catalytic oxidation of ammonia to nitric oxide, which is oxidised to nitrogen dioxide, and then dissolved in water to give concentrated nitric acid. In the
United States of America The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territo ...
, over seven million tonnes of nitric acid are produced every year, most of which is used for nitrate production for fertilisers and explosives, among other uses. Anhydrous nitric acid may be made by distilling concentrated nitric acid with phosphorus pentoxide at low pressure in glass apparatus in the dark. It can only be made in the solid state, because upon melting it spontaneously decomposes to nitrogen dioxide, and liquid nitric acid undergoes self-ionisation to a larger extent than any other covalent liquid as follows: :2 HNO3 + H2O + O2sup>+ + O3sup>− Two hydrates, HNO3·H2O and HNO3·3H2O, are known that can be crystallised. It is a strong acid and concentrated solutions are strong oxidising agents, though gold,
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
,
rhodium Rhodium is a chemical element with the symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring i ...
, and
iridium Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density of ...
are immune to attack. A 3:1 mixture of concentrated hydrochloric acid and nitric acid, called '' aqua regia'', is still stronger and successfully dissolves gold and platinum, because free chlorine and nitrosyl chloride are formed and chloride anions can form strong complexes. In concentrated sulfuric acid, nitric acid is protonated to form nitronium, which can act as an electrophile for aromatic nitration: :HNO3 + 2 H2SO4 + H3O+ + 2 The thermal stabilities of nitrates (involving the trigonal planar anion) depends on the basicity of the metal, and so do the products of decomposition (thermolysis), which can vary between the nitrite (for example, sodium), the oxide (potassium and
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
), or even the metal itself (
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
) depending on their relative stabilities. Nitrate is also a common ligand with many modes of coordination. Finally, although orthonitric acid (H3NO4), which would be analogous to
orthophosphoric acid Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula . It is commonly encountered as an 85% aqueous solution, w ...
, does not exist, the tetrahedral orthonitrate anion is known in its sodium and potassium salts: :NaNO3 + Na2O -> ce\ce] Na3NO4 These white crystalline salts are very sensitive to water vapour and carbon dioxide in the air: :Na3NO4 + H2O + CO2 → NaNO3 + NaOH + NaHCO3 Despite its limited chemistry, the orthonitrate anion is interesting from a structural point of view due to its regular tetrahedral shape and the short N–O bond lengths, implying significant polar character to the bonding.


Organic nitrogen compounds

Nitrogen is one of the most important elements in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, ...
. Many organic
functional group In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the re ...
s involve a carbon–nitrogen bond, such as
amide In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula , where R, R', and R″ represent organic groups or hydrogen atoms. The amide group is called a peptide bond when it i ...
s (RCONR2),
amine In chemistry, amines (, ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (), wherein one or more hydrogen Hydrogen is the chemical element wi ...
s (R3N),
imine In organic chemistry, an imine ( or ) is a functional group or organic compound containing a carbon–nitrogen double bond (). The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bon ...
s (RC(=NR)R), imides (RCO)2NR, azides (RN3),
azo compound Azo compounds are organic compounds bearing the functional group diazenyl (, in which R and R′ can be either aryl or alkyl groups). IUPAC defines azo compounds as: "Derivatives of diazene (diimide), , wherein both hydrogens are substituted ...
s (RN2R),
cyanate Cyanate is an anion with the structural formula , usually written . It also refers to any salt containing it, such as ammonium cyanate. It is an isomer of the much less stable fulminate anion .William R. Martin and David W. Ball (2019): "Sma ...
s and
isocyanate In organic chemistry, isocyanate is the functional group with the formula . Organic compounds that contain an isocyanate group are referred to as isocyanates. An organic compound with two isocyanate groups is known as a diisocyanate. Diisocyan ...
s (ROCN or RCNO), nitrates (RONO2), nitriles and
isonitrile An isocyanide (also called isonitrile or carbylamine) is an organic compound with the functional group –. It is the isomer of the related nitrile (–C≡N), hence the prefix is ''isocyano''.IUPAC Goldboo''isocyanides''/ref> The organic fragme ...
s (RCN or RNC), nitrites (RONO),
nitro compound In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups (). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitr ...
s (RNO2),
nitroso compound In organic chemistry, nitroso refers to a functional group in which the nitric oxide () group is attached to an organic moiety. As such, various nitroso groups can be categorized as ''C''-nitroso compounds (e.g., nitrosoalkanes; ), ''S''-nitroso ...
s (RNO),
oxime In organic chemistry, an oxime is a organic compound belonging to the imines, with the general formula , where R is an organic side-chain and R’ may be hydrogen, forming an aldoxime, or another organic group, forming a ketoxime. O-substituted ...
s (RCR=NOH), and
pyridine Pyridine is a basic heterocyclic organic compound with the chemical formula . It is structurally related to benzene, with one methine group replaced by a nitrogen atom. It is a highly flammable, weakly alkaline, water-miscible liquid with a ...
derivatives. C–N bonds are strongly polarised towards nitrogen. In these compounds, nitrogen is usually trivalent (though it can be tetravalent in
quaternary ammonium salt In chemistry, quaternary ammonium cations, also known as quats, are positively charged polyatomic ions of the structure , R being an alkyl group or an aryl group. Unlike the ammonium ion () and the primary, secondary, or tertiary ammonium cation ...
s, R4N+), with a lone pair that can confer basicity on the compound by being coordinated to a proton. This may be offset by other factors: for example, amides are not basic because the lone pair is delocalised into a double bond (though they may act as acids at very low pH, being protonated at the oxygen), and pyrrole is not acidic because the lone pair is delocalised as part of an
aromatic In chemistry, aromaticity is a chemical property of cyclic ( ring-shaped), ''typically'' planar (flat) molecular structures with pi bonds in resonance (those containing delocalized electrons) that gives increased stability compared to satur ...
ring. The amount of nitrogen in a
chemical substance A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., w ...
can be determined by the Kjeldahl method. In particular, nitrogen is an essential component of
nucleic acids Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
, amino acids and thus proteins, and the energy-carrying molecule adenosine triphosphate and is thus vital to all life on Earth.


Occurrence

Nitrogen is the most common pure element in the earth, making up 78.1% of the volume of the atmosphere (75.5% by mass), around 3.89 million
gigatonnes The tonne ( or ; symbol: t) is a unit of mass equal to 1000 kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton to distinguish it from the non-metric units of the short ton (United States c ...
. Despite this, it is not very abundant in Earth's crust, making up somewhere around 19 
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, th ...
of this, on par with niobium, gallium, and
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
. (This represents 300,000 to a million gigatonnes of nitrogen, depending on the mass of the crust.) The only important nitrogen minerals are
nitre Niter or nitre is the mineral form of potassium nitrate, KNO3. It is a soft, white, highly soluble mineral found primarily in arid climates or cave deposits. Historically, the term ''niter'' was not well differentiated from natron, both of w ...
(
potassium nitrate Potassium nitrate is a chemical compound with the chemical formula . This alkali metal nitrate salt is also known as Indian saltpetre (large deposits of which were historically mined in India). It is an ionic salt of potassium ions K+ and nitr ...
, saltpetre) and soda nitre ( sodium nitrate, Chilean saltpetre). However, these have not been an important source of nitrates since the 1920s, when the industrial synthesis of ammonia and nitric acid became common.Greenwood and Earnshaw, pp. 407–09 Nitrogen compounds constantly interchange between the atmosphere and living organisms. Nitrogen must first be processed, or " fixed", into a plant-usable form, usually ammonia. Some nitrogen fixation is done by lightning strikes producing the nitrogen oxides, but most is done by
diazotroph Diazotrophs are bacteria and archaea that fix gaseous nitrogen in the atmosphere into a more usable form such as ammonia. A diazotroph is a microorganism that is able to grow without external sources of fixed nitrogen. Examples of organisms that ...
ic bacteria through enzymes known as
nitrogenase Nitrogenases are enzymes () that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the reduction of nitrogen (N2) to ammonia (NH3). Nitrogenases are the only fa ...
s (although today industrial nitrogen fixation to ammonia is also significant). When the ammonia is taken up by plants, it is used to synthesise proteins. These plants are then digested by animals who use the nitrogen compounds to synthesise their proteins and excrete nitrogen-bearing waste. Finally, these organisms die and decompose, undergoing bacterial and environmental oxidation and
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
, returning free dinitrogen to the atmosphere. Industrial nitrogen fixation by the
Haber process The Haber process, also called the Haber–Bosch process, is an artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today. It is named after its inventors, the German chemists Fritz Haber and ...
is mostly used as fertiliser, although excess nitrogen–bearing waste, when leached, leads to eutrophication of freshwater and the creation of marine dead zones, as nitrogen-driven bacterial growth depletes water oxygen to the point that all higher organisms die. Furthermore, nitrous oxide, which is produced during denitrification, attacks the atmospheric ozone layer. Many saltwater fish manufacture large amounts of trimethylamine oxide to protect them from the high
osmotic Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region o ...
effects of their environment; conversion of this compound to
dimethylamine Dimethylamine is an organic compound with the formula (CH3)2NH. This secondary amine is a colorless, flammable gas with an ammonia-like odor. Dimethylamine is commonly encountered commercially as a solution in water at concentrations up to aroun ...
is responsible for the early odour in unfresh saltwater fish. In animals,
free radical A daughter category of ''Ageing'', this category deals only with the biological aspects of ageing. Ageing Ailments of unknown cause Biogerontology Biological processes Causes of death Cellular processes Gerontology Life extension Metabo ...
nitric oxide (derived from an amino acid), serves as an important regulatory molecule for circulation. Nitric oxide's rapid reaction with water in animals results in the production of its metabolite nitrite. Animal
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
of nitrogen in proteins, in general, results in the
excretion Excretion is a process in which metabolic waste is eliminated from an organism. In vertebrates this is primarily carried out by the lungs, kidneys, and skin. This is in contrast with secretion, where the substance may have specific tasks after ...
of
urea Urea, also known as carbamide, is an organic compound with chemical formula . This amide has two amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest amide of carbamic acid. Urea serves an important ...
, while animal metabolism of
nucleic acids Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
results in the excretion of
urea Urea, also known as carbamide, is an organic compound with chemical formula . This amide has two amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest amide of carbamic acid. Urea serves an important ...
and
uric acid Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown ...
. The characteristic odour of animal flesh decay is caused by the creation of long-chain, nitrogen-containing
amine In chemistry, amines (, ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (), wherein one or more hydrogen Hydrogen is the chemical element wi ...
s, such as
putrescine Putrescine is an organic compound with the formula (CH2)4(NH2)2. It is a colorless solid that melts near room temperature. It is classified as a diamine. Together with cadaverine, it is largely responsible for the foul odor of putrefying flesh, ...
and
cadaverine Cadaverine is an organic compound with the formula (CH2)5(NH2)2. Classified as diamine, it is a colorless liquid with an unpleasant odor. It is present in small quantities in living organisms but is often associated with the putrefaction of an ...
, which are breakdown products of the amino acids
ornithine Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. The radical is ornithyl. Role in urea cycle L-Ornithine is one of the produ ...
and lysine, respectively, in decaying proteins.


Production

Nitrogen gas is an industrial gas produced by the fractional distillation of
liquid air Liquid air is air that has been cooled to very low temperatures ( cryogenic temperatures), so that it has condensed into a pale blue mobile liquid. To thermally insulate it from room temperature, it is stored in specialized containers ( vacuum in ...
, or by mechanical means using gaseous air (pressurised reverse osmosis membrane or
pressure swing adsorption Pressure swing adsorption (PSA) is a technique used to separate some gas species from a mixture of gases (typically air) under pressure according to the species' molecular characteristics and affinity for an adsorbent material. It operates at ne ...
). Nitrogen gas generators using membranes or pressure swing adsorption (PSA) are typically more cost and energy efficient than bulk-delivered nitrogen. Commercial nitrogen is often a byproduct of air-processing for industrial concentration of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
for steelmaking and other purposes. When supplied compressed in cylinders it is often called OFN (oxygen-free nitrogen). Commercial-grade nitrogen already contains at most 20 ppm oxygen, and specially purified grades containing at most 2 ppm oxygen and 10 ppm
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as ...
are also available.Greenwood and Earnshaw, pp. 409–11 In a chemical laboratory, it is prepared by treating an aqueous solution of ammonium chloride with
sodium nitrite Sodium nitrite is an inorganic compound with the chemical formula NaNO2. It is a white to slightly yellowish crystalline powder that is very soluble in water and is hygroscopic. From an industrial perspective, it is the most important nitrite ...
. :NH4Cl + NaNO2 → N2 + NaCl + 2 H2O Small amounts of the impurities NO and HNO3 are also formed in this reaction. The impurities can be removed by passing the gas through aqueous sulfuric acid containing
potassium dichromate Potassium dichromate, , is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health ...
. Very pure nitrogen can be prepared by the thermal decomposition of barium azide or sodium azide. :2 NaN3 → 2 Na + 3 N2


Applications


Gas

The applications of nitrogen compounds are naturally extremely widely varied due to the huge size of this class: hence, only applications of pure nitrogen itself will be considered here. Two-thirds (2/3) of nitrogen produced by industry is sold as gas and the remaining one-third (1/3) as a liquid. The gas is mostly used as a low reactivity safe atmosphere wherever the oxygen in the air would pose a fire, explosion, or oxidising hazard. Some examples include: * As a
modified atmosphere Modified atmosphere packaging (MAP) is the practice of modifying the composition of the internal atmosphere of a package (commonly food packages, drugs, etc.) in order to improve the shelf life. The need for this technology for food arises from t ...
, pure or mixed with
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
, to nitrogenate and preserve the freshness of packaged or bulk foods (by delaying rancidity and other forms of
oxidative damage Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal r ...
). Pure nitrogen as food additive is labeled in the
European Union The European Union (EU) is a supranational political and economic union of member states that are located primarily in Europe. The union has a total area of and an estimated total population of about 447million. The EU has often been de ...
with the E number E941. * In
incandescent light bulb An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a wire filament heated until it glows. The filament is enclosed in a glass bulb with a vacuum or inert gas to protect the filament from oxid ...
s as an inexpensive alternative to
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as ...
. * In fire suppression systems for Information technology (IT) equipment. * In the manufacture of stainless steel. * In the
case-hardening Case-hardening or surface hardening is the process of hardening the surface of a metal object while allowing the metal deeper underneath to remain soft, thus forming a thin layer of harder metal at the surface. For iron or steel with low carbon ...
of steel by
nitriding Nitriding is a heat treating process that diffuses nitrogen into the surface of a metal to create a case-hardened surface. These processes are most commonly used on low-alloy steels. They are also used on titanium, aluminium and molybdenum. T ...
. * In some aircraft fuel systems to reduce fire hazard (see
inerting system An inerting system decreases the probability of combustion of flammable materials stored in a confined space. The most common such system is a fuel tank containing a combustible liquid, such as gasoline, diesel fuel, aviation fuel, jet fuel, or ro ...
). * To inflate race car and aircraft
tire A tire (American English) or tyre (British English) is a ring-shaped component that surrounds a wheel's rim to transfer a vehicle's load from the axle through the wheel to the ground and to provide traction on the surface over which t ...
s, reducing the problems of inconsistent expansion and contraction caused by moisture and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
in natural air. Nitrogen is commonly used during sample preparation in
chemical analysis Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separati ...
. It is used to concentrate and reduce the volume of liquid samples. Directing a pressurised stream of nitrogen gas perpendicular to the surface of the liquid causes the solvent to evaporate while leaving the solute(s) and un-evaporated solvent behind. Nitrogen can be used as a replacement, or in combination with,
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
to pressurise kegs of some
beer Beer is one of the oldest and the most widely consumed type of alcoholic drink in the world, and the third most popular drink overall after water and tea. It is produced by the brewing and fermentation of starches, mainly derived from ce ...
s, particularly stouts and British ales, due to the smaller bubbles it produces, which makes the dispensed beer smoother and headier. A pressure-sensitive nitrogen capsule known commonly as a " widget" allows nitrogen-charged beers to be packaged in cans and
bottle A bottle is a narrow-necked container made of an impermeable material (such as glass, plastic or aluminium) in various shapes and sizes that stores and transports liquids. Its mouth, at the bottling line, can be sealed with an internal stop ...
s. Nitrogen tanks are also replacing carbon dioxide as the main power source for paintball guns. Nitrogen must be kept at a higher pressure than CO2, making N2 tanks heavier and more expensive.


Equipment

Some construction equipment uses pressurized nitrogen gas to help
hydraulic system Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid coun ...
to provide extra power to devices such as hydraulic hammer. Nitrogen gas, formed from the decomposition of sodium azide, is used for the inflation of airbags.


Execution

As nitrogen is an asphyxiant gas, some jurisdictions have considered asphyxiation by inhalation of pure nitrogen as a means of
capital punishment Capital punishment, also known as the death penalty, is the state-sanctioned practice of deliberately killing a person as a punishment for an actual or supposed crime, usually following an authorized, rule-governed process to conclude that t ...
(as a substitute for lethal injection). However, , no executions using nitrogen gas have yet been carried out by any jurisdiction, and at least one jurisdiction ( Oklahoma) which had considered nitrogen asphyxiation as an execution protocol had abandoned the effort.


Liquid

Liquid nitrogen is a cryogenic liquid which looks like
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
. When insulated in proper containers such as
dewar flask A vacuum flask (also known as a Dewar flask, Dewar bottle or thermos) is an insulating storage vessel that greatly lengthens the time over which its contents remain hotter or cooler than the flask's surroundings. Invented by Sir James Dew ...
s, it can be transported and stored with a low rate of evaporative loss. Like
dry ice Dry ice is the solid form of carbon dioxide. It is commonly used for temporary refrigeration as CO2 does not have a liquid state at normal atmospheric pressure and sublimates directly from the solid state to the gas state. It is used primarily ...
, the main use of liquid nitrogen is for cooling to low temperatures. It is used in the
cryopreservation Cryo-preservation or cryo-conservation is a process where organisms, organelles, cells, tissues, extracellular matrix, organs, or any other biological constructs susceptible to damage caused by unregulated chemical kinetics are preserved by co ...
of biological materials such as blood and reproductive cells ( sperm and
eggs Humans and human ancestors have scavenged and eaten animal eggs for millions of years. Humans in Southeast Asia had domesticated chickens and harvested their eggs for food by 1,500 BCE. The most widely consumed eggs are those of fowl, especial ...
). It is used in
cryotherapy Cryotherapy, sometimes known as cold therapy, is the local or general use of low temperatures in medical therapy. Cryotherapy may be used to treat a variety of tissue lesions. The most prominent use of the term refers to the surgical treatment, s ...
to remove cysts and warts on the skin by freezing them. It is used in laboratory
cold trap In vacuum applications, a cold trap is a device that condenses all vapors except the permanent gases into a liquid or solid. The most common objective is to prevent vapors being evacuated from an experiment from entering a vacuum pump where they ...
s, and in
cryopump A cryopump or a "cryogenic pump" is a vacuum pump that traps gases and vapours by condensing them on a cold surface, but are only effective on some gases. The effectiveness depends on the freezing and boiling points of the gas relative to the cryop ...
s to obtain lower pressures in
vacuum pump A vacuum pump is a device that draws gas molecules from a sealed volume in order to leave behind a partial vacuum. The job of a vacuum pump is to generate a relative vacuum within a capacity. The first vacuum pump was invented in 1650 by Otto ...
ed systems. It is used to cool heat-sensitive electronics such as
infrared detector An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors). The thermal effects of the incident IR radiation can be followed through many temperature depen ...
s and
X-ray detector X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays. Detectors can be divided into two major categories: imaging detectors (such as photographic plates and X-ray film (photograp ...
s. Other uses include freeze-grinding and machining materials that are soft or rubbery at room temperature, shrink-fitting and assembling engineering components, and more generally to attain very low temperatures where necessary. Because of its low cost, liquid nitrogen is often used for cooling even when such low temperatures are not strictly necessary, such as refrigeration of food,
freeze-branding Freeze branding (sometimes called CryoBranding and the resulting brands, trichoglyphs) is a technique involving a cryogenic coolant instead of heat to produce permanent marks on a variety of animals. The coolant is used to lower the temperature of ...
livestock, freezing pipes to halt flow when valves are not present, and consolidating unstable soil by freezing whenever excavation is going on underneath.


Safety


Gas

Although nitrogen is non-toxic, when released into an enclosed space it can displace oxygen, and therefore presents an
asphyxiation Asphyxia or asphyxiation is a condition of deficient supply of oxygen to the body which arises from abnormal breathing. Asphyxia causes generalized hypoxia, which affects primarily the tissues and organs. There are many circumstances that ca ...
hazard. This may happen with few warning symptoms, since the human
carotid body The carotid body is a small cluster of chemoreceptor cells, and supporting sustentacular cells. The carotid body is located in the adventitia, in the bifurcation (fork) of the common carotid artery, which runs along both sides of the neck. The ...
is a relatively poor and slow low-oxygen (hypoxia) sensing system. An example occurred shortly before the launch of the first Space Shuttle mission on March 19, 1981, when two technicians died from asphyxiation after they walked into a space located in the Space Shuttle's mobile launcher platform that was pressurised with pure nitrogen as a precaution against fire. When inhaled at high partial pressures (more than about 4 bar, encountered at depths below about 30 m in
scuba diving Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface air supply. The name "scuba", an acronym for " Self-Contained Underwater Breathing Apparatus", was coined by Chr ...
), nitrogen is an anesthetic agent, causing
nitrogen narcosis Narcosis while diving (also known as nitrogen narcosis, inert gas narcosis, raptures of the deep, Martini effect) is a reversible alteration in consciousness that occurs while diving at depth. It is caused by the anesthetic effect of certain g ...
, a temporary state of mental impairment similar to
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and has ...
intoxication. Nitrogen dissolves in the
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the cir ...
and body fats. Rapid decompression (as when divers ascend too quickly or astronauts decompress too quickly from cabin pressure to spacesuit pressure) can lead to a potentially fatal condition called
decompression sickness Decompression sickness (abbreviated DCS; also called divers' disease, the bends, aerobullosis, and caisson disease) is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompressio ...
(formerly known as caisson sickness or ''the bends''), when nitrogen bubbles form in the bloodstream, nerves, joints, and other sensitive or vital areas. Bubbles from other "inert" gases (gases other than carbon dioxide and oxygen) cause the same effects, so replacement of nitrogen in
breathing gas A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed ...
es may prevent nitrogen narcosis, but does not prevent decompression sickness.


Liquid

As a cryogenic liquid, liquid nitrogen can be dangerous by causing cold burns on contact, although the
Leidenfrost effect The Leidenfrost effect is a physical phenomenon in which a liquid, close to a surface that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this re ...
provides protection for very short exposure (about one second). Ingestion of liquid nitrogen can cause severe internal damage. For example, in 2012, a young woman in England had to have her stomach removed after ingesting a cocktail made with liquid nitrogen. Because the liquid-to-gas
expansion ratio The expansion ratio of a liquefied and cryogenic substance is the volume of a given amount of that substance in liquid form compared to the volume of the same amount of substance in gaseous form, at room temperature and normal atmospheric pressure. ...
of nitrogen is 1:694 at 20 °C, a tremendous amount of force can be generated if liquid nitrogen is rapidly vaporised in an enclosed space. In an incident on January 12, 2006, at
Texas A&M University Texas A&M University (Texas A&M, A&M, or TAMU) is a public, land-grant, research university in College Station, Texas. It was founded in 1876 and became the flagship institution of the Texas A&M University System in 1948. As of late 2021, T ...
, the pressure-relief devices of a tank of liquid nitrogen were malfunctioning and later sealed. As a result of the subsequent pressure buildup, the tank failed catastrophically. The force of the explosion was sufficient to propel the tank through the ceiling immediately above it, shatter a reinforced concrete beam immediately below it, and blow the walls of the laboratory 0.1–0.2 m off their foundations. Liquid nitrogen readily evaporates to form gaseous nitrogen, and hence the precautions associated with gaseous nitrogen also apply to liquid nitrogen.British Compressed Gases Association (2000) BCGA Code of Practice CP30
The Safe Use of Liquid nitrogen Dewars up to 50 litres.
.
For example, oxygen sensors are sometimes used as a safety precaution when working with liquid nitrogen to alert workers of gas spills into a confined space. Vessels containing liquid nitrogen can condense oxygen from air. The liquid in such a vessel becomes increasingly enriched in oxygen (boiling point −183 °C, higher than that of nitrogen) as the nitrogen evaporates, and can cause violent oxidation of organic material.


Oxygen deficiency monitors

Oxygen deficiency monitors are used to measure levels of oxygen in confined spaces and any place where nitrogen gas or liquid are stored or used. In the event of a nitrogen leak, and a decrease in oxygen to a pre-set alarm level, an oxygen deficiency monitor can be programmed to set off audible and visual alarms, thereby providing notification of the possible impending danger. Most commonly the oxygen range to alert personnel is when oxygen levels get below 19.5%. OSHA specifies that a hazardous atmosphere may include one where the oxygen concentration is below 19.5% or above 23.5%.National Institutes of Health. Protocol for Use and Maintenance of Oxygen Monitoring Devices. February 2014, at 1:35 UTC. Available at: https://www.ors.od.nih.gov/sr/dohs/documents/protocoloxygenmonitoring.pdf . Accessed June 23, 2020 Oxygen deficiency monitors can either be fixed, mounted to the wall and hard-wired into the building's power supply or simply plugged into a power outlet, or a portable hand-held or wearable monitor.


See also

*
Reactive nitrogen species Reactive nitrogen species (RNS) are a family of antimicrobial molecules derived from nitric oxide (•NO) and superoxide (O2•−) produced via the enzymatic activity of inducible nitric oxide synthase 2 ( NOS2) and NADPH oxidase respectivel ...
* Soil gas


References


Bibliography

*


External links


Etymology of Nitrogen


at ''
The Periodic Table of Videos ''Periodic Videos'' (also known as ''The Periodic Table of Videos'') is a video project and YouTube channel on chemistry. It consists of a series of videos about chemical elements and the periodic table, with additional videos on other topics i ...
'' (University of Nottingham)
Nitrogen podcast
from the Royal Society of Chemistry's '' Chemistry World'' {{good article Chemical elements Pnictogens Reactive nonmetals Diatomic nonmetals Coolants Laser gain media Dielectric gases Industrial gases E-number additives GABAA receptor positive allosteric modulators Articles containing video clips