List Of Dynamical System Topics
   HOME

TheInfoList



OR:

This is a list of
dynamical system In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
and differential equation topics, by Wikipedia page. See also
list of partial differential equation topics {{Short description, none This is a list of partial differential equation topics. General topics *Partial differential equation ** Nonlinear partial differential equation *** list of nonlinear partial differential equations * Boundary condition * ...
,
list of equations This is a list of equations, by Wikipedia page under appropriate bands of their field. Eponymous equations The following equations are named after researchers who discovered them. Mathematics * Cauchy–Riemann equations * Chapman–Kolmog ...
.


Dynamical systems, in general

*
Deterministic system (mathematics) In mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given sta ...
*
Linear system In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstractio ...
*
Partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
*
Dynamical systems and chaos theory Dynamical systems theory is an area of mathematics used to describe the behavior of complex systems, complex dynamical systems, usually by employing differential equations by nature of the ergodic theory, ergodicity of dynamic systems. When differ ...
*
Chaos theory Chaos theory is an interdisciplinary area of Scientific method, scientific study and branch of mathematics. It focuses on underlying patterns and Deterministic system, deterministic Scientific law, laws of dynamical systems that are highly sens ...
** Chaos argument **
Butterfly effect In chaos theory, the butterfly effect is the sensitive dependence on initial conditions in which a small change in one state of a deterministic nonlinear system can result in large differences in a later state. The term is closely associated w ...
** 0-1 test for chaos *
Bifurcation diagram In mathematics, particularly in dynamical systems, a bifurcation diagram shows the values visited or approached asymptotically ( fixed points, periodic orbits, or chaotic attractors) of a system as a function of a bifurcation parameter in the ...
*
Feigenbaum constant In mathematics, specifically bifurcation theory, the Feigenbaum constants and are two mathematical constants which both express ratios in a bifurcation diagram for a non-linear map. They are named after the physicist Mitchell J. Feigenbaum. ...
*
Sharkovskii's theorem In mathematics, Sharkovskii's theorem (also spelled Sharkovsky, Sharkovskiy, Šarkovskii or Sarkovskii), named after Oleksandr Mykolayovych Sharkovsky, who published it in 1964, is a result about discrete dynamical systems. One of the implications ...
*
Attractor In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain c ...
** Strange nonchaotic attractor *
Stability theory In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation, for example, is a stable partial differ ...
**
Mechanical equilibrium In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is ze ...
** Astable ** Monostable **
Bistability In a dynamical system, bistability means the system has two Stability theory, stable equilibrium states. A bistable structure can be resting in either of two states. An example of a mechanical device which is bistable is a light switch. The ...
**
Metastability In chemistry and physics, metastability is an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball is onl ...
*
Feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause and effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handle ...
**
Negative feedback Negative feedback (or balancing feedback) occurs when some function (Mathematics), function of the output of a system, process, or mechanism is feedback, fed back in a manner that tends to reduce the fluctuations in the output, whether caused ...
**
Positive feedback Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop where the outcome of a process reinforces the inciting process to build momentum. As such, these forces can exacerbate the effects ...
**
Homeostasis In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
*
Damping ratio In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include ...
*
Dissipative system A dissipative system is a thermodynamically open system which is operating out of, and often far from, thermodynamic equilibrium in an environment with which it exchanges energy and matter. A tornado may be thought of as a dissipative system. Di ...
*
Spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion o ...
*
Turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between ...
*
Perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
*
Control theory Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the applic ...
** Non-linear control **
Adaptive control Adaptive control is the control method used by a controller which must adapt to a controlled system with parameters which vary, or are initially uncertain. For example, as an aircraft flies, its mass will slowly decrease as a result of fuel consump ...
**
Hierarchical control A hierarchy (from Greek: , from , 'president of sacred rites') is an arrangement of items (objects, names, values, categories, etc.) that are represented as being "above", "below", or "at the same level as" one another. Hierarchy is an important ...
**
Intelligent control Intelligent control is a class of control techniques that use various artificial intelligence computing approaches like neural networks, Bayesian probability, fuzzy logic, machine learning, reinforcement learning, evolutionary computation and gene ...
**
Optimal control Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations ...
** Dynamic programming **
Robust control In control theory, robust control is an approach to controller design that explicitly deals with uncertainty. Robust control methods are designed to function properly provided that uncertain parameters or disturbances are found within some (typical ...
**
Stochastic control Stochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesi ...
*
System dynamics System dynamics (SD) is an approach to understanding the nonlinear behaviour of complex systems over time using stocks, flows, internal feedback loops, table functions and time delays. Overview System dynamics is a methodology and mathematical ...
,
system analysis System analysis in the field of electrical engineering characterizes electrical systems and their properties. System analysis can be used to represent almost anything from population growth to audio speakers; electrical engineers often use it b ...
*
Takens' theorem In the study of dynamical systems, a delay embedding theorem gives the conditions under which a chaotic dynamical system can be reconstructed from a sequence of observations of the state of that system. The reconstruction preserves the properti ...
* Exponential dichotomy * Liénard's theorem * Krylov–Bogolyubov theorem * Krylov-Bogoliubov averaging method


Abstract dynamical systems

*
Measure-preserving dynamical system In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special ca ...
*
Ergodic theory Ergodic theory is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, "statistical properties" refers to properties which are expressed through the behav ...
*
Mixing (mathematics) In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing. The concept appears in ...
*
Almost periodic function In mathematics, an almost periodic function is, loosely speaking, a function of a real variable that is periodic to within any desired level of accuracy, given suitably long, well-distributed "almost-periods". The concept was first studied by ...
*
Symbolic dynamics In mathematics, symbolic dynamics is the study of dynamical systems defined on a discrete space consisting of infinite sequences of abstract symbols. The evolution of the dynamical system is defined as a simple shift of the sequence. Because of t ...
*
Time scale calculus In mathematics, time-scale calculus is a unification of the theory of difference equations with that of differential equations, unifying integral and differential calculus with the calculus of finite differences, offering a formalism for studying ...
*
Arithmetic dynamics Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the Iterated function, iteration of self-maps of the complex plane or o ...
* Sequential dynamical system * Graph dynamical system *
Topological dynamical system In mathematics, topological dynamics is a branch of the theory of dynamical systems in which qualitative, asymptotic properties of dynamical systems are studied from the viewpoint of general topology. Scope The central object of study in topolog ...


Dynamical systems, examples

*
List of chaotic maps In mathematics, a chaotic map is a map (mathematics), map (an Discrete-time dynamical system, evolution function) that exhibits some sort of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time parameter. Discrete ma ...
*
Logistic map The logistic map is a discrete dynamical system defined by the quadratic difference equation: Equivalently it is a recurrence relation and a polynomial mapping of degree 2. It is often referred to as an archetypal example of how complex, ...
* Lorenz attractor * Lorenz-96 *
Iterated function system In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry. They were introduced in 1981. IFS fractals ...
*
Tetration In mathematics, tetration (or hyper-4) is an operation (mathematics), operation based on iterated, or repeated, exponentiation. There is no standard mathematical notation, notation for tetration, though Knuth's up arrow notation \uparrow \upa ...
*
Ackermann function In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total function, total computable function that is not Primitive recursive function, primitive recursive. ...
*
Horseshoe map In the mathematics of chaos theory, a horseshoe map is any member of a class of chaotic maps of the square into itself. It is a core example in the study of dynamical systems. The map was introduced by Stephen Smale while studying the behavior ...
*
Hénon map In mathematics, the Hénon map, sometimes called Hénon–Pomeau attractor/map, is a discrete-time dynamical system. It is one of the most studied examples of dynamical systems that exhibit chaos theory, chaotic behavior. The Hénon map takes ...
*
Arnold's cat map In mathematics, Arnold's cat map is a chaos theory, chaotic map from the torus into itself, named after Vladimir Arnold, who demonstrated its effects in the 1960s using an image of a cat, hence the name. It is a simple and pedagogical example for ...
*
Population dynamics Population dynamics is the type of mathematics used to model and study the size and age composition of populations as dynamical systems. Population dynamics is a branch of mathematical biology, and uses mathematical techniques such as differenti ...


Complex dynamics Complex dynamics, or holomorphic dynamics, is the study of dynamical systems obtained by Iterated function, iterating a complex analytic mapping. This article focuses on the case of algebraic dynamics, where a polynomial or rational function is it ...

*
Fatou set In complex dynamics, the Julia set and the Fatou set are two complementary sets (Julia "laces" and Fatou "dusts") defined from a function. Informally, the Fatou set of the function consists of values with the property that all nearby values ...
*
Julia set In complex dynamics, the Julia set and the Classification of Fatou components, Fatou set are two complement set, complementary sets (Julia "laces" and Fatou "dusts") defined from a function (mathematics), function. Informally, the Fatou set of ...
*
Mandelbrot set The Mandelbrot set () is a two-dimensional set (mathematics), set that is defined in the complex plane as the complex numbers c for which the function f_c(z)=z^2+c does not Stability theory, diverge to infinity when Iteration, iterated starting ...


Difference equations

*
Recurrence relation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
*
Matrix difference equation A matrix difference equation is a difference equation in which the value of a vector (or sometimes, a matrix) of variables at one point in time is related to its own value at one or more previous points in time, using matrices. The order of the e ...
* Rational difference equation


Ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable (mathematics), variable. As with any other DE, its unknown(s) consists of one (or more) Function (mathematic ...
s: general

* Examples of differential equations *
Autonomous system (mathematics) In mathematics, an autonomous system or autonomous differential equation is a simultaneous equations, system of ordinary differential equations which does not explicitly depend on the independent variable. When the variable is time, they are als ...
*
Picard–Lindelöf theorem In mathematics, specifically the study of differential equations, the Picard–Lindelöf theorem gives a set of conditions under which an initial value problem has a unique solution. It is also known as Picard's existence theorem, the Cauchy– ...
*
Peano existence theorem In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees th ...
* Carathéodory existence theorem *
Numerical ordinary differential equations Numerical methods for ordinary differential equations are methods used to find Numerical analysis, numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although ...
*
Bendixson–Dulac theorem In mathematics, the Bendixson–Dulac theorem on dynamical systems states that if there exists a C^1 function \varphi(x, y) (called the Dulac function) such that the expression :\frac + \frac has the same sign (\neq 0) almost everywhere in a ...
* Gradient conjecture *
Recurrence plot In descriptive statistics and chaos theory, a recurrence plot (RP) is a plot showing, for each moment j in time, the times at which the state of a dynamical system returns to the previous state at i, i.e., when the phase space trajectory visits rou ...
*
Limit cycle In mathematics, in the study of dynamical systems with two-dimensional phase space, a limit cycle is a closed trajectory in phase space having the property that at least one other trajectory spirals into it either as time approaches infinity o ...
*
Initial value problem In multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or ...
* Clairaut's equation * Singular solution *
Poincaré–Bendixson theorem In mathematics, the Poincaré–Bendixson theorem is a statement about the long-term behaviour of orbits of continuous dynamical systems on the plane, cylinder, or two-sphere. Theorem Given a differentiable real dynamical system defined on an op ...
*
Riccati equation In mathematics, a Riccati equation in the narrowest sense is any first-order ordinary differential equation that is quadratic in the unknown function. In other words, it is an equation of the form y'(x) = q_0(x) + q_1(x) \, y(x) + q_2(x) \, y^2( ...
s *
Functional differential equation A functional differential equation is a differential equation with deviating argument. That is, a functional differential equation is an equation that contains a function and some of its derivatives evaluated at different argument values. Function ...


Linear differential equation In mathematics, a linear differential equation is a differential equation that is linear equation, linear in the unknown function and its derivatives, so it can be written in the form a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x) wher ...
s

*
Exponential growth Exponential growth occurs when a quantity grows as an exponential function of time. The quantity grows at a rate directly proportional to its present size. For example, when it is 3 times as big as it is now, it will be growing 3 times as fast ...
**
Malthusian catastrophe Malthusianism is a theory that population growth is potentially exponential, according to the Malthusian growth model, while the growth of the food supply or other resources is linear, which eventually reduces living standards to the point of tr ...
* Exponential response formula *
Simple harmonic motion In mechanics and physics, simple harmonic motion (sometimes abbreviated as ) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from ...
** Phasor (physics) **
RLC circuit An RLC circuit is an electrical circuit consisting of a electrical resistance, resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote ...
**
Resonance Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
*** Impedance *** Reactance ***
Musical tuning In music, there are two common meanings for tuning: * #Tuning practice, Tuning practice, the act of tuning an instrument or voice. * #Tuning systems, Tuning systems, the various systems of Pitch (music), pitches used to tune an instrument, and ...
***
Orbital resonance In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relation ...
***
Tidal resonance In oceanography, a tidal resonance occurs when the tide excites one of the resonant modes of the ocean. The effect is most striking when a continental shelf is about a quarter wavelength wide. Then an incident tidal wave can be reinforced ...
*
Oscillator Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
**
Harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force ''F'' proportional to the displacement ''x'': \vec F = -k \vec x, where ''k'' is a positive const ...
**
Electronic oscillator An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found ...
**
Floquet theory Floquet theory is a branch of the theory of ordinary differential equations relating to the class of solutions to periodic linear differential equations of the form :\dot = A(t) x, with x\in and \displaystyle A(t) \in being a piecewise continu ...
**
Fundamental frequency The fundamental frequency, often referred to simply as the ''fundamental'' (abbreviated as 0 or 1 ), is defined as the lowest frequency of a Periodic signal, periodic waveform. In music, the fundamental is the musical pitch (music), pitch of a n ...
**
Oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
(Vibration) * Fundamental matrix (linear differential equation) * Laplace transform applied to differential equations *
Sturm–Liouville theory In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form \frac \left (x) \frac\right+ q(x)y = -\lambda w(x) y for given functions p(x), q(x) and w(x), together with some ...
*
Wronskian In mathematics, the Wronskian of ''n'' differentiable functions is the determinant formed with the functions and their derivatives up to order . It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of ...
* Loewy decomposition


Mechanics

*
Pendulum A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate i ...
**
Inverted pendulum An inverted pendulum is a pendulum that has its center of mass above its Lever, pivot point. It is unstable equilibrium, unstable and falls over without additional help. It can be suspended stably in this inverted position by using a control s ...
**
Double pendulum In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamical systems, dy ...
**
Foucault pendulum The Foucault pendulum or Foucault's pendulum is a simple device named after French physicist Léon Foucault, conceived as an experiment to demonstrate the Earth's rotation. If a long and heavy pendulum suspended from the high roof above a circu ...
** Spherical pendulum *
Kinematics In physics, kinematics studies the geometrical aspects of motion of physical objects independent of forces that set them in motion. Constrained motion such as linked machine parts are also described as kinematics. Kinematics is concerned with s ...
*
Equation of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathem ...
*
Dynamics (mechanics) In physics, dynamics or classical dynamics is the study of forces and their effect on motion. It is a branch of classical mechanics, along with ''statics'' and ''kinematics''. The ''fundamental principle of dynamics'' is linked to Newton's secon ...
*
Classical mechanics Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics inv ...
* Isolated physical system **
Lagrangian mechanics In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the d'Alembert principle of virtual work. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the ...
**
Hamiltonian mechanics In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (gener ...
**
Routhian mechanics In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the La ...
** Hamilton-Jacobi theory ** Appell's equation of motion ** Udwadia–Kalaba equation **
Celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
**
Orbit In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an ...
*
Lagrange point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the gravitational influence of two massive orbiting bodies. Mathematically, this involves t ...
** Kolmogorov-Arnold-Moser theorem **
N-body problem In physics, the -body problem is the problem of predicting the individual motions of a group of astronomical object, celestial objects interacting with each other gravitationally.Leimanis and Minorsky: Our interest is with Leimanis, who first d ...
,
many-body problem The many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of many interacting particles. Terminology ''Microscopic'' here implies that quantum mechanics has to be ...
*
Ballistics Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially weapon munitions such as bullets, unguided bombs, rockets and the like; the science or art of designing and acceler ...


Functions defined via an ODE

*
Airy function In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai(''x'') and the related function Bi(''x''), are Linear in ...
*
Bessel function Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex ...
*
Legendre polynomials In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and t ...
*
Hypergeometric function In mathematics, the Gaussian or ordinary hypergeometric function 2''F''1(''a'',''b'';''c'';''z'') is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is ...


Rotating systems

*
Angular velocity In physics, angular velocity (symbol or \vec, the lowercase Greek letter omega), also known as the angular frequency vector,(UP1) is a pseudovector representation of how the angular position or orientation of an object changes with time, i ...
*
Angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
*
Angular acceleration In physics, angular acceleration (symbol α, alpha) is the time rate of change of angular velocity. Following the two types of angular velocity, ''spin angular velocity'' and ''orbital angular velocity'', the respective types of angular accele ...
*
Angular displacement The angular displacement (symbol θ, , or φ) – also called angle of rotation, rotational displacement, or rotary displacement – of a physical body is the angle (in units of radians, degrees, turns, etc.) through which the body rotates ( ...
*
Rotational invariance In mathematics, a function defined on an inner product space is said to have rotational invariance if its value does not change when arbitrary rotations are applied to its argument. Mathematics Functions For example, the function : f(x,y) = ...
*
Rotational inertia The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relatively to a rotational axis. It is the ratio between ...
*
Torque In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically \boldsymbol\tau, the lowercase Greek letter ''tau''. Wh ...
*
Rotational energy Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object and is part of its total kinetic energy. Looking at rotational energy separately around an object's axis of rotation, the following dependence on the ob ...
*
Centripetal force Centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is the force that makes a body follow a curved trajectory, path. The direction of the centripetal force is always orthogonality, orthogonal to the motion of the bod ...
*
Centrifugal force Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axi ...
**
Centrifugal governor A centrifugal governor is a specific type of governor with a feedback system that controls the speed of an engine by regulating the flow of fuel or working fluid, so as to maintain a near-constant speed. It uses the principle of proportional con ...
*
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
*
Axis of rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
*
Flywheel A flywheel is a mechanical device that uses the conservation of angular momentum to store rotational energy, a form of kinetic energy proportional to the product of its moment of inertia and the square of its rotational speed. In particular, a ...
**
Flywheel energy storage Flywheel energy storage (FES) works by accelerating a rotor (flywheel) to a very high speed and maintaining the energy in the system as rotational energy. When energy is extracted from the system, the flywheel's rotational speed is reduced as a ...
**
Momentum wheel A reaction wheel (RW) is an electric motor attached to a flywheel, which, when its rotation speed is changed, causes a counter-rotation proportionately through Angular momentum#Conservation of angular momentum, conservation of angular momentum. ...
*
Spinning top A spinning top, or simply a top, is a toy with a squat body and a sharp point at the bottom, designed to be rotation, spun on its vertical Axis of rotation, axis, balancing on the tip due to the gyroscopic effect. Once set in motion, a top will ...
*
Gyroscope A gyroscope (from Ancient Greek γῦρος ''gŷros'', "round" and σκοπέω ''skopéō'', "to look") is a device used for measuring or maintaining Orientation (geometry), orientation and angular velocity. It is a spinning wheel or disc in ...
*
Gyrocompass A gyrocompass is a type of non-magnetic compass which is based on a fast-spinning disc and the rotation of the Earth (or another planetary body if used elsewhere in the universe) to find geographical Direction (geometry), direction automaticall ...
*
Precession Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In o ...
*
Nutation Nutation () is a rocking, swaying, or nodding motion in the axis of rotation of a largely axially symmetric object, such as a gyroscope, planet, or bullet in flight, or as an intended behaviour of a mechanism. In an appropriate reference fra ...


Swarms

*
Particle swarm optimization In computational science, particle swarm optimization (PSO) is a computational method that Mathematical optimization, optimizes a problem by iterative method, iteratively trying to improve a candidate solution with regard to a given measure of qu ...
*
Self-propelled particles Self-propelled particles (SPP), also referred to as self-driven particles, are terms used by physicists to describe autonomous agents, which convert energy from the environment into directed or persistent random walk. Natural systems which have ...
*
Swarm intelligence Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 198 ...


Stochastic dynamic equations

*
Random walk In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some Space (mathematics), mathematical space. An elementary example of a rand ...
*
Autoregressive process In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it can be used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregre ...
*
Unit root In probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if ...
* Moving average process *
Autoregressive–moving-average model In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a too ...
*
Autoregressive integrated moving average In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and pe ...
* Vector autoregressive model *
Stochastic differential equation A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics an ...
*
Stochastic partial differential equation Stochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations. They hav ...
{{DEFAULTSORT:Dynamical systems and differential equation topics * Mathematics-related lists Outlines of mathematics and logic Outlines Lists of topics