HOME

TheInfoList



OR:

Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
absorbs an inner atomic
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
, usually from the K or L
electron shell In chemistry and atomic physics, an electron shell may be thought of as an orbit followed by electrons around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or ...
s. This process thereby changes a nuclear proton to a neutron and simultaneously causes the emission of an
electron neutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli ...
. : : or when written as a nuclear reaction equation, ^_e + ^_p -> ^_n + ^_ ν_e Since this single emitted neutrino carries the entire
decay energy The decay energy is the energy change of a nucleus having undergone a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energy ...
, it has this single characteristic energy. Similarly, the momentum of the neutrino emission causes the daughter atom to recoil with a single characteristic momentum. The resulting
daughter nuclide In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (de ...
, if it is in an excited state, then transitions to its ground state. Usually, a gamma ray is emitted during this transition, but nuclear de-excitation may also take place by
internal conversion Internal conversion is a non-radioactive, atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal ...
. Following capture of an inner electron from the atom, an outer electron replaces the electron that was captured and one or more
characteristic X-ray Characteristic X-rays are emitted when outer-shell electrons fill a vacancy in the inner shell of an atom, releasing X-rays in a pattern that is "characteristic" to each element. Characteristic X-rays were discovered by Charles Glover Barkla in 190 ...
photons is emitted in this process. Electron capture sometimes also results in the
Auger effect The Auger effect or Auger−Meitner effect is a physical phenomenon in which the filling of an inner-shell vacancy of an atom is accompanied by the emission of an electron from the same atom. When a core electron is removed, leaving a vacancy, ...
, where an electron is ejected from the atom's electron shell due to interactions between the atom's electrons in the process of seeking a lower energy electron state. Following electron capture, the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
is reduced by one, the neutron number is increased by one, and there is no change in
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
. Simple electron capture by itself results in a neutral atom, since the loss of the electron in the
electron shell In chemistry and atomic physics, an electron shell may be thought of as an orbit followed by electrons around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or ...
is balanced by a loss of positive nuclear charge. However, a positive atomic ion may result from further Auger electron emission. Electron capture is an example of
weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
, one of the four fundamental forces. Electron capture is the primary decay mode for
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s with a relative superabundance of protons in the nucleus, but with insufficient energy difference between the isotope and its prospective daughter (the isobar with one less positive charge) for the nuclide to decay by emitting a positron. Electron capture is always an alternative decay mode for
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
isotopes that ''do'' have sufficient energy to decay by
positron emission Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron ...
. Electron capture is sometimes included as a type of
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
, because the basic nuclear process, mediated by the weak force, is the same. In
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
, beta decay is a type of radioactive decay in which a
beta ray A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β� ...
(fast energetic electron or positron) and a neutrino are emitted from an atomic nucleus. Electron capture is sometimes called
inverse beta decay Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in ...
, though this term usually refers to the interaction of an
electron antineutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli ...
with a proton. If the energy difference between the parent atom and the daughter atom is less than 1.022 
MeV In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
, positron emission is forbidden as not enough
decay energy The decay energy is the energy change of a nucleus having undergone a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energy ...
is available to allow it, and thus electron capture is the sole decay mode. For example, rubidium-83 (37 protons, 46 neutrons) will decay to krypton-83 (36 protons, 47 neutrons) solely by electron capture (the energy difference, or decay energy, is about 0.9 MeV).


History

The theory of electron capture was first discussed by Gian-Carlo Wick in a 1934 paper, and then developed by
Hideki Yukawa was a Japanese theoretical physicist and the first Japanese Nobel laureate for his prediction of the pi meson, or pion. Biography He was born as Hideki Ogawa in Tokyo and grew up in Kyoto with two older brothers, two older sisters, and two yo ...
and others. K-electron capture was first observed by Luis Alvarez, in vanadium, , which he reported in 1937. Alvarez went on to study electron capture in gallium () and other nuclides.


Reaction details

The electron that is captured is one of the atom's own electrons, and not a new, incoming electron, as might be suggested by the way the above reactions are written. A few examples of electron capture are: : Radioactive isotopes that decay by pure electron capture can be inhibited from radioactive decay if they are fully
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
ized ("stripped" is sometimes used to describe such ions). It is hypothesized that such elements, if formed by the r-process in exploding supernovae, are ejected fully ionized and so do not undergo radioactive decay as long as they do not encounter electrons in outer space. Anomalies in elemental distributions are thought to be partly a result of this effect on electron capture. Inverse decays can also be induced by full ionisation; for instance, decays into by electron capture; however, a fully ionised decays into a bound state of by the process of bound-state β decay.
Chemical bond A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules and crystals. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing of ...
s can also affect the rate of electron capture to a small degree (in general, less than 1%) depending on the proximity of electrons to the nucleus. For example, in 7Be, a difference of 0.9% has been observed between half-lives in metallic and insulating environments. This relatively large effect is due to the fact that beryllium is a small atom that employs valence electrons that are close to the nucleus, and also in orbitals with no orbital angular momentum. Electrons in s orbitals (regardless of shell or primary quantum number), have a probability antinode at the nucleus, and are thus far more subject to electron capture than p or d electrons, which have a probability node at the nucleus. Around the elements in the middle of the periodic table, isotopes that are lighter than stable isotopes of the same element tend to decay through electron capture, while isotopes heavier than the stable ones decay by electron emission. Electron capture happens most often in the heavier neutron-deficient elements where the mass change is smallest and positron emission is not always possible. When the loss of mass in a nuclear reaction is greater than zero but less than the process cannot occur by positron emission, but occurs spontaneously for electron capture.


Common examples

Some common radioisotopes that decay solely by electron capture include: For a full list, see the
table of nuclides A table or chart of nuclides is a two-dimensional Cartesian coordinate system, graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol ''N'') and the other represents the number of protons (atomic number, sy ...
.


References


External links

* with filter on electron capture {{Authority control Nuclear physics Nuclear chemistry Radioactivity