HOME

TheInfoList



OR:

Glucose is a
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecul ...
with the molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s. It is mainly made by
plants Plants are the eukaryotes that form the kingdom Plantae; they are predominantly photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with cyanobacteria to produce sugars f ...
and most
algae Algae ( , ; : alga ) is an informal term for any organisms of a large and diverse group of photosynthesis, photosynthetic organisms that are not plants, and includes species from multiple distinct clades. Such organisms range from unicellular ...
during
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
from water and carbon dioxide, using energy from sunlight. It is used by plants to make
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
, the most abundant carbohydrate in the world, for use in
cell wall A cell wall is a structural layer that surrounds some Cell type, cell types, found immediately outside the cell membrane. It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, ...
s, and by all living organisms to make
adenosine triphosphate Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
(ATP), which is used by the cell as energy. In energy metabolism, glucose is the most important source of energy in all
organism An organism is any life, living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have be ...
s. Glucose for metabolism is stored as a
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
, in plants mainly as
amylose Amylose is a polysaccharide made of α-D-glucose units, bonded to each other through α(1→4) glycosidic bonds. It is one of the two components of starch, making up approximately 20–25% of it. Because of its tightly packed Helix, helical struct ...
and amylopectin, and in animals as glycogen. Glucose circulates in the blood of animals as
blood sugar The blood sugar level, blood sugar concentration, blood glucose level, or glycemia is the measure of glucose concentrated in the blood. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. For a 70 kg (1 ...
. The naturally occurring form is -glucose, while its stereoisomer -glucose is produced synthetically in comparatively small amounts and is less biologically active. Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose. The glucose molecule can exist in an open-chain (acyclic) as well as ring (cyclic) form. Glucose is naturally occurring and is found in its free state in fruits and other parts of plants. In animals, it is released from the breakdown of glycogen in a process known as glycogenolysis. Glucose, as intravenous sugar solution, is on the World Health Organization's List of Essential Medicines. It is also on the list in combination with
sodium chloride Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
(table salt). The name glucose is derived from
Ancient Greek Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek ...
() 'wine, must', from () 'sweet'. The suffix '' -ose'' is a chemical classifier denoting a sugar.


History

Glucose was first isolated from raisins in 1747 by the German chemist Andreas Marggraf. Glucose was discovered in grapes by another German chemist Johann Tobias Lowitzin 1792, and distinguished as being different from cane sugar ( sucrose). Glucose is the term coined by Jean Baptiste Dumas in 1838, which has prevailed in the chemical literature. Friedrich August Kekulé proposed the term dextrose (from the
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
, meaning "right"), because in aqueous solution of glucose, the plane of linearly polarized light is turned to the right. In contrast, l-fructose (usually referred to as -fructose) (a ketohexose) and l-glucose (-glucose) turn linearly polarized light to the left. The earlier notation according to the rotation of the plane of linearly polarized light (''d'' and ''l''-nomenclature) was later abandoned in favor of the - and -notation, which refers to the absolute configuration of the asymmetric center farthest from the carbonyl group, and in concordance with the configuration of - or -glyceraldehyde.John F. Robyt: ''Essentials of Carbohydrate Chemistry''. Springer Science & Business Media, 2012, . p. 7. Since glucose is a basic necessity of many organisms, a correct understanding of its chemical makeup and structure contributed greatly to a general advancement in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the science, scientific study of the structure, properties, and reactions of organic compounds and organic matter, organic materials, i.e., matter in its various forms that contain ...
. This understanding occurred largely as a result of the investigations of Emil Fischer, a German chemist who received the 1902 Nobel Prize in Chemistry for his findings. The synthesis of glucose established the structure of organic material and consequently formed the first definitive validation of
Jacobus Henricus van 't Hoff Jacobus Henricus van 't Hoff Jr. (; 30 August 1852 – 1 March 1911) was a Dutch physical chemistry, physical chemist. A highly influential theoretical chemistry, theoretical chemist of his time, Van 't Hoff was the first winner of the Nobe ...
's theories of chemical kinetics and the arrangements of chemical bonds in carbon-bearing molecules. Between 1891 and 1894, Fischer established the stereochemical configuration of all the known sugars and correctly predicted the possible
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
s, applying Van 't Hoff equation of asymmetrical carbon atoms. The names initially referred to the natural substances. Their
enantiomers In chemistry, an enantiomer (Help:IPA/English, /ɪˈnænti.əmər, ɛ-, -oʊ-/ Help:Pronunciation respelling key, ''ih-NAN-tee-ə-mər''), also known as an optical isomer, antipode, or optical antipode, is one of a pair of molecular entities whi ...
were given the same name with the introduction of systematic nomenclatures, taking into account absolute stereochemistry (e.g. Fischer nomenclature, / nomenclature). For the discovery of the metabolism of glucose Otto Meyerhof received the Nobel Prize in Physiology or Medicine in 1922. Hans von Euler-Chelpin was awarded the Nobel Prize in Chemistry along with Arthur Harden in 1929 for their "research on the
fermentation Fermentation is a type of anaerobic metabolism which harnesses the redox potential of the reactants to make adenosine triphosphate (ATP) and organic end products. Organic molecules, such as glucose or other sugars, are catabolized and reduce ...
of sugar and their share of enzymes in this process". In 1947, Bernardo Houssay (for his discovery of the role of the pituitary gland in the metabolism of glucose and the derived carbohydrates) as well as Carl and Gerty Cori (for their discovery of the conversion of glycogen from glucose) received the Nobel Prize in Physiology or Medicine. In 1970, Luis Leloir was awarded the Nobel Prize in Chemistry for the discovery of glucose-derived sugar nucleotides in the biosynthesis of carbohydrates.


Chemical and physical properties

Glucose forms white or colorless solids that are highly soluble in water and
acetic acid Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main compone ...
but poorly soluble in methanol and
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula . It is an Alcohol (chemistry), alcohol, with its formula also written as , or EtOH, where Et is the ps ...
. They melt at (''α'') and (''beta''), decompose starting at with release of various volatile products, ultimately leaving a residue of
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
. Glucose has a pKa value of 12.16 at in water. With six carbon atoms, it is classed as a hexose, a subcategory of the monosaccharides. -Glucose is one of the sixteen aldohexose stereoisomers. The -
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
, -glucose, also known as dextrose, occurs widely in nature, but the -isomer, -glucose, does not. Glucose can be obtained by
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
of carbohydrates such as milk sugar ( lactose), cane sugar (sucrose), maltose,
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
, glycogen, etc. Dextrose is commonly commercially manufactured from starches, such as
corn starch Cornflour, cornstarch, maize starch, or corn starch (American English) is the starch derived from corn (maize) grain. The starch is obtained from the endosperm of the seed, kernel. Corn starch is a common food ingredient, often used to thick ...
in the US and Japan, from potato and wheat starch in Europe, and from
tapioca starch Tapioca (; ) is a starch extracted from the tubers of the cassava plant (''Manihot esculenta,'' also known as manioc), a species native to the North Region, Brazil, North and Northeast Region, Brazil, Northeast regions of Brazil, but which has ...
in tropical areas. The manufacturing process uses hydrolysis via pressurized steaming at controlled pH in a jet followed by further enzymatic depolymerization. Unbonded glucose is one of the main ingredients of
honey Honey is a sweet and viscous substance made by several species of bees, the best-known of which are honey bees. Honey is made and stored to nourish bee colonies. Bees produce honey by gathering and then refining the sugary secretions of pl ...
. The term ''dextrose'' is often used in a clinical (related to patient's health status) or nutritional context (related to dietary intake, such as food labels or dietary guidelines), while "glucose" is used in a biological or physiological context (chemical processes and molecular interactions), but both terms refer to the same molecule, specifically D-glucose. ''Dextrose monohydrate'' is the hydrated form of D-glucose, meaning that it is a glucose molecule with an additional water molecule attached. Its chemical formula is  · . Dextrose monohydrate is also called ''hydrated D-glucose'', and commonly manufactured from plant starches. Dextrose monohydrate is utilized as the predominant type of dextrose in food applications, such as beverage mixes—it is a common form of glucose widely used as a nutrition supplement in production of foodstuffs. Dextrose monohydrate is primarily consumed in North America as a
corn syrup Corn syrup is a food syrup that is made from the starch of corn/maize and contains varying amounts of sugars: glucose, maltose and higher oligosaccharides, depending on the grade. Corn syrup is used in foods to soften Mouthfeel, texture, add vol ...
or high-fructose corn syrup. ''Anhydrous dextrose'', on the other hand, is glucose that does not have any water molecules attached to it. Anhydrous chemical substances are commonly produced by eliminating water from a hydrated substance through methods such as heating or drying up (desiccation). Dextrose monohydrate can be dehydrated to anhydrous dextrose in industrial setting. Dextrose monohydrate is composed of approximately 9.5% water by mass; through the process of dehydration, this water content is eliminated to yield anhydrous (dry) dextrose. Anhydrous dextrose has the chemical formula , without any water molecule attached which is the same as glucose. Anhydrous dextrose on open air tends to absorb moisture and transform to the monohydrate, and it is more expensive to produce. Anhydrous dextrose (anhydrous D-glucose) has increased stability and increased shelf life, has medical applications, such as in oral glucose tolerance test. Whereas molecular weight (molar mass) for D-glucose monohydrate is 198.17 g/mol, that for anhydrous D-glucose is 180.16 g/mol The density of these two forms of glucose is also different. In terms of chemical structure, glucose is a monosaccharide, that is, a simple sugar. Glucose contains six carbon atoms and an aldehyde group, and is therefore an aldohexose. The glucose molecule can exist in an open-chain (acyclic) as well as ring (cyclic) form—due to the presence of
alcohol Alcohol may refer to: Common uses * Alcohol (chemistry), a class of compounds * Ethanol, one of several alcohols, commonly known as alcohol in everyday life ** Alcohol (drug), intoxicant found in alcoholic beverages ** Alcoholic beverage, an alco ...
and aldehyde or
ketone In organic chemistry, a ketone is an organic compound with the structure , where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group (a carbon-oxygen double bond C=O). The simplest ketone is acetone ( ...
functional groups, the form having the straight chain can easily convert into a chair-like hemiacetal ring structure commonly found in carbohydrates.


Structure and nomenclature

Glucose is present in solid form as a monohydrate with a closed pyran ring (α-D-glucopyranose monohydrate, sometimes known less precisely by dextrose hydrate). In aqueous solution, on the other hand, a small proportion of glucose can be found in an open-chain configuration while remaining predominantly as α- or β- pyranose, which interconvert. From aqueous solutions, the three known forms can be crystallized: α-glucopyranose, β-glucopyranose and α-glucopyranose monohydrate. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of oligosaccharides such as raffinose and of
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long-chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with wat ...
s such as starch, amylopectin, glycogen, and
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
. The glass transition temperature of glucose is and the Gordon–Taylor constant (an experimentally determined constant for the prediction of the glass transition temperature for different mass fractions of a mixture of two substances)Patrick F. Fox: ''Advanced Dairy Chemistry Volume 3: Lactose, water, salts and vitamins'', Springer, 1992. Volume 3, . p. 316. is 4.5.Benjamin Caballero, Paul Finglas, Fidel Toldrá: ''Encyclopedia of Food and Health''. Academic Press (2016). , Volume 1, p. 76.


Open-chain form

A open-chain form of glucose makes up less than 0.02% of the glucose molecules in an aqueous solution at equilibrium. The rest is one of two cyclic hemiacetal forms. In its open-chain form, the glucose molecule has an open (as opposed to cyclic) unbranched backbone of six carbon atoms, where C-1 is part of an aldehyde group . Therefore, glucose is also classified as an aldose, or an aldohexose. The aldehyde group makes glucose a reducing sugar giving a positive reaction with the Fehling test.


Cyclic forms

In solutions, the open-chain form of glucose (either "-" or "-") exists in equilibrium with several cyclic isomers, each containing a ring of carbons closed by one oxygen atom. In aqueous solution, however, more than 99% of glucose molecules exist as pyranose forms. The open-chain form is limited to about 0.25%, and furanose forms exist in negligible amounts. The terms "glucose" and "-glucose" are generally used for these cyclic forms as well. The ring arises from the open-chain form by an intramolecular nucleophilic addition reaction between the aldehyde group (at C-1) and either the C-4 or C-5 hydroxyl group, forming a hemiacetal linkage, . The reaction between C-1 and C-5 yields a six-membered heterocyclic system called a pyranose, which is a monosaccharide sugar (hence "-ose") containing a derivatised pyran skeleton. The (much rarer) reaction between C-1 and C-4 yields a five-membered furanose ring, named after the cyclic ether furan. In either case, each carbon in the ring has one hydrogen and one hydroxyl attached, except for the last carbon (C-4 or C-5) where the hydroxyl is replaced by the remainder of the open molecule (which is or respectively). The ring-closing reaction can give two products, denoted "α-" and "β-". When a glucopyranose molecule is drawn in the Haworth projection, the designation "α-" means that the hydroxyl group attached to C-1 and the group at C-5 lies on opposite sides of the ring's plane (a '' trans'' arrangement), while "β-" means that they are on the same side of the plane (a '' cis'' arrangement). Therefore, the open-chain isomer -glucose gives rise to four distinct cyclic isomers: α--glucopyranose, β--glucopyranose, α--glucofuranose, and β--glucofuranose. These five structures exist in equilibrium and interconvert, and the interconversion is much more rapid with acid
catalysis Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
.
The other open-chain isomer -glucose similarly gives rise to four distinct cyclic forms of -glucose, each the mirror image of the corresponding -glucose. The glucopyranose ring (α or β) can assume several non-planar shapes, analogous to the "chair" and "boat" conformations of
cyclohexane Cyclohexane is a cycloalkane with the molecular formula . Cyclohexane is non-polar. Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexan ...
. Similarly, the glucofuranose ring may assume several shapes, analogous to the "envelope" conformations of cyclopentane. In the solid state, only the glucopyranose forms are observed. Some derivatives of glucofuranose, such as 1,2-''O''-isopropylidene--glucofuranose are stable and can be obtained pure as crystalline solids. For example, reaction of α-D-glucose with ''para''-tolylboronic acid reforms the normal pyranose ring to yield the 4-fold ester α-D-glucofuranose-1,2:3,5-bis(''p''-tolylboronate).


Mutarotation

Mutarotation consists of a temporary reversal of the ring-forming reaction, resulting in the open-chain form, followed by a reforming of the ring. The ring closure step may use a different group than the one recreated by the opening step (thus switching between pyranose and furanose forms), or the new hemiacetal group created on C-1 may have the same or opposite handedness as the original one (thus switching between the α and β forms). Thus, though the open-chain form is barely detectable in solution, it is an essential component of the equilibrium. The open-chain form is thermodynamically unstable, and it spontaneously
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
izes to the cyclic forms. (Although the ring closure reaction could in theory create four- or three-atom rings, these would be highly strained, and are not observed in practice.) In solutions at room temperature, the four cyclic isomers interconvert over a time scale of hours, in a process called mutarotation. Starting from any proportions, the mixture converges to a stable ratio of α:β 36:64. The ratio would be α:β 11:89 if it were not for the influence of the anomeric effect. Mutarotation is considerably slower at temperatures close to .


Optical activity

Whether in water or the solid form, -(+)-glucose is dextrorotatory, meaning it will rotate the direction of polarized light clockwise as seen looking toward the light source. The effect is due to the chirality of the molecules, and indeed the mirror-image isomer, -(−)-glucose, is levorotatory (rotates polarized light counterclockwise) by the same amount. The strength of the effect is different for each of the five tautomers. The - prefix does not refer directly to the optical properties of the compound. It indicates that the C-5 chiral centre has the same handedness as that of -glyceraldehyde (which was so labelled because it is dextrorotatory). The fact that -glucose is dextrorotatory is a combined effect of its four chiral centres, not just of C-5; some of the other -aldohexoses are levorotatory. The conversion between the two anomers can be observed in a polarimeter since pure α--glucose has a specific rotation angle of +112.2° mL/(dm·g), pure β--glucose of +17.5° mL/(dm·g).Manfred Hesse, Herbert Meier, Bernd Zeeh, Stefan Bienz, Laurent Bigler, Thomas Fox: ''Spektroskopische Methoden in der organischen Chemie''. 8th revised Edition. Georg Thieme, 2011, , p. 34 (in German). When equilibrium has been reached after a certain time due to mutarotation, the angle of rotation is +52.7° mL/(dm·g). By adding acid or base, this transformation is much accelerated. The equilibration takes place via the open-chain aldehyde form.


Isomerisation

In dilute
sodium hydroxide Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula . It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly corrosive base (chemistry), ...
or other dilute bases, the monosaccharides mannose, glucose and
fructose Fructose (), or fruit sugar, is a Ketose, ketonic monosaccharide, simple sugar found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. It is one of the three dietary monosaccharides, along with glucose and gal ...
interconvert (via a Lobry de Bruyn–Alberda–Van Ekenstein transformation), so that a balance between these isomers is formed. This reaction proceeds via an enediol:


Biochemical properties

Glucose is the most abundant monosaccharide. Glucose is also the most widely used aldohexose in most living organisms. One possible explanation for this is that glucose has a lower tendency than other aldohexoses to react nonspecifically with the amine groups of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s. This reaction—
glycation Glycation (non-enzymatic glycosylation) is the covalent bond, covalent attachment of a sugar to a protein, lipid or nucleic acid molecule. Typical sugars that participate in glycation are glucose, fructose, and their derivatives. Glycation is th ...
—impairs or destroys the function of many proteins, e.g. in glycated hemoglobin. Glucose's low rate of glycation can be attributed to its having a more stable cyclic form compared to other aldohexoses, which means it spends less time than they do in its reactive open-chain form. The reason for glucose having the most stable cyclic form of all the aldohexoses is that its hydroxy groups (with the exception of the hydroxy group on the anomeric carbon of -glucose) are in the equatorial position. Presumably, glucose is the most abundant natural monosaccharide because it is less glycated with proteins than other monosaccharides.Jeremy M. Berg: ''Stryer Biochemie'' . Springer-Verlag, 2017, , p. 531. Another hypothesis is that glucose, being the only -aldohexose that has all five hydroxy substituents in the equatorial position in the form of β--glucose, is more readily accessible to chemical reactions, for example, for esterification or
acetal In organic chemistry, an acetal is a functional group with the connectivity . Here, the R groups can be organic fragments (a carbon atom, with arbitrary other atoms attached to that) or hydrogen, while the R' groups must be organic fragments n ...
formation. For this reason, -glucose is also a highly preferred building block in natural polysaccharides (glycans). Polysaccharides that are composed solely of glucose are termed glucans. Glucose is produced by plants through photosynthesis using sunlight, water and carbon dioxide and can be used by all living organisms as an energy and carbon source. However, most glucose does not occur in its free form, but in the form of its polymers, i.e. lactose, sucrose, starch and others which are energy reserve substances, and cellulose and
chitin Chitin (carbon, C8hydrogen, H13oxygen, O5nitrogen, N)n ( ) is a long-chain polymer of N-Acetylglucosamine, ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is the second most abundant polysaccharide in nature (behind only cell ...
, which are components of the cell wall in plants or
fungi A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
and
arthropod Arthropods ( ) are invertebrates in the phylum Arthropoda. They possess an arthropod exoskeleton, exoskeleton with a cuticle made of chitin, often Mineralization (biology), mineralised with calcium carbonate, a body with differentiated (Metam ...
s, respectively. These polymers, when consumed by animals, fungi and bacteria, are degraded to glucose using enzymes. All animals are also able to produce glucose themselves from certain precursors as the need arises.
Neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s, cells of the renal medulla and
erythrocytes Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
depend on glucose for their energy production.Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' .. Springer-Verlag, 2014, , p. 195. In adult humans, there is about of glucose,U. Satyanarayana: ''Biochemistry''. Elsevier Health Sciences, 2014, . p. 674. of which about is present in the blood. Approximately of glucose is produced in the liver of an adult in 24 hours. Many of the long-term complications of diabetes (e.g.,
blindness Visual or vision impairment (VI or VIP) is the partial or total inability of visual perception. In the absence of treatment such as corrective eyewear, assistive devices, and medical treatment, visual impairment may cause the individual difficul ...
, kidney failure, and peripheral neuropathy) are probably due to the glycation of proteins or
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
s. In contrast,
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
-regulated addition of sugars to protein is called
glycosylation Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
and is essential for the function of many proteins.


Uptake

Ingested glucose initially binds to the receptor for sweet taste on the tongue in humans. This complex of the proteins T1R2 and T1R3 makes it possible to identify glucose-containing food sources. Glucose mainly comes from food—about per day is produced by conversion of food,Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie''. Springer-Verlag, 2014, , p. 404. but it is also synthesized from other metabolites in the body's cells. In humans, the breakdown of glucose-containing polysaccharides happens in part already during chewing by means of
amylase An amylase () is an enzyme that catalysis, catalyses the hydrolysis of starch (Latin ') into sugars. Amylase is present in the saliva of humans and some other mammals, where it begins the chemical process of digestion. Foods that contain large ...
, which is contained in saliva, as well as by maltase, lactase, and sucrase on the brush border of the
small intestine The small intestine or small bowel is an organ (anatomy), organ in the human gastrointestinal tract, gastrointestinal tract where most of the #Absorption, absorption of nutrients from food takes place. It lies between the stomach and large intes ...
. Glucose is a building block of many carbohydrates and can be split off from them using certain enzymes. Glucosidases, a subgroup of the glycosidases, first catalyze the hydrolysis of long-chain glucose-containing polysaccharides, removing terminal glucose. In turn, disaccharides are mostly degraded by specific glycosidases to glucose. The names of the degrading enzymes are often derived from the particular poly- and disaccharide; inter alia, for the degradation of polysaccharide chains there are amylases (named after amylose, a component of starch), cellulases (named after cellulose), chitinases (named after chitin), and more. Furthermore, for the cleavage of disaccharides, there are maltase, lactase, sucrase, trehalase, and others. In humans, about 70 genes are known that code for glycosidases. They have functions in the digestion and degradation of glycogen,
sphingolipid Sphingolipids are a class of lipids containing a backbone of sphingoid bases, which are a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sp ...
s, mucopolysaccharides, and poly( ADP-ribose). Humans do not produce cellulases, chitinases, or trehalases, but the bacteria in the gut microbiota do. In order to get into or out of cell membranes of cells and membranes of cell compartments, glucose requires special transport proteins from the
major facilitator superfamily The major facilitator superfamily (MFS) is a Protein superfamily, superfamily of membrane transport proteins that facilitate movement of small solutes across cell membranes in response to chemiosmosis, chemiosmotic gradients. Function The major ...
. In the small intestine (more precisely, in the
jejunum The jejunum is the second part of the small intestine in humans and most higher vertebrates, including mammals, reptiles, and birds. Its lining is specialized for the absorption by enterocytes of small nutrient molecules which have been pr ...
),Harold A. Harper: ''Medizinische Biochemie'' . Springer-Verlag, 2013, , p. 641. glucose is taken up into the intestinal
epithelium Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
with the help of glucose transporters via a secondary active transport mechanism called sodium ion-glucose symport via sodium/glucose cotransporter 1 (SGLT1). Further transfer occurs on the basolateral side of the intestinal epithelial cells via the glucose transporter GLUT2, as well uptake into liver cells, kidney cells, cells of the islets of Langerhans,
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s, astrocytes, and tanycytes. Glucose enters the liver via the portal vein and is stored there as a cellular glycogen. In the liver cell, it is phosphorylated by glucokinase at position 6 to form glucose 6-phosphate, which cannot leave the cell. Glucose 6-phosphatase can convert glucose 6-phosphate back into glucose exclusively in the liver, so the body can maintain a sufficient blood glucose concentration. In other cells, uptake happens by passive transport through one of the 14 GLUT proteins. In the other cell types, phosphorylation occurs through a hexokinase, whereupon glucose can no longer diffuse out of the cell. The glucose transporter GLUT1 is produced by most cell types and is of particular importance for nerve cells and pancreatic β-cells. GLUT3 is highly expressed in nerve cells. Glucose from the bloodstream is taken up by GLUT4 from
muscle cell A muscle cell, also known as a myocyte, is a mature contractile Cell (biology), cell in the muscle of an animal. In humans and other vertebrates there are three types: skeletal muscle, skeletal, smooth muscle, smooth, and Cardiac muscle, cardiac ...
s (of the
skeletal muscle Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
and heart muscle) and fat cells. GLUT14 is expressed exclusively in
testicle A testicle or testis ( testes) is the gonad in all male bilaterians, including humans, and is Homology (biology), homologous to the ovary in females. Its primary functions are the production of sperm and the secretion of Androgen, androgens, p ...
s. Excess glucose is broken down and converted into fatty acids, which are stored as
triglyceride A triglyceride (from '' tri-'' and '' glyceride''; also TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other vertebrates ...
s. In the
kidney In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organ (anatomy), organs that are a multilobar, multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located on the left and rig ...
s, glucose in the urine is absorbed via SGLT1 and SGLT2 in the apical cell membranes and transmitted via GLUT2 in the basolateral cell membranes. About 90% of kidney glucose reabsorption is via SGLT2 and about 3% via SGLT1.


Biosynthesis

In plants and some
prokaryote A prokaryote (; less commonly spelled procaryote) is a unicellular organism, single-celled organism whose cell (biology), cell lacks a cell nucleus, nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Ancient Gree ...
s, glucose is a product of
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
. Glucose is also formed by the breakdown of polymeric forms of glucose like glycogen (in animals and
mushroom A mushroom or toadstool is the fleshy, spore-bearing Sporocarp (fungi), fruiting body of a fungus, typically produced above ground on soil or another food source. ''Toadstool'' generally refers to a poisonous mushroom. The standard for the n ...
s) or starch (in plants). The cleavage of glycogen is termed glycogenolysis, the cleavage of starch is called starch degradation. The metabolic pathway that begins with molecules containing two to four carbon atoms (C) and ends in the glucose molecule containing six carbon atoms is called gluconeogenesis and occurs in all living organisms. The smaller starting materials are the result of other metabolic pathways. Ultimately almost all
biomolecule A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes. Biomolecules include large macromolecules such as proteins, carbohydrates, lipids ...
s come from the assimilation of carbon dioxide in plants and microbes during photosynthesis. The free energy of formation of α--glucose is 917.2 kilojoules per mole. In humans, gluconeogenesis occurs in the liver and kidney,Leszek Szablewski: ''Glucose Homeostasis and Insulin Resistance''. Bentham Science Publishers, 2011, , p. 46. but also in other cell types. In the liver about of glycogen are stored, in skeletal muscle about .Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' . Springer-Verlag, 2014, , p. 389. However, the glucose released in muscle cells upon cleavage of the glycogen can not be delivered to the circulation because glucose is phosphorylated by the hexokinase, and a glucose-6-phosphatase is not expressed to remove the phosphate group. Unlike for glucose, there is no transport protein for glucose-6-phosphate. Gluconeogenesis allows the organism to build up glucose from other metabolites, including lactate or certain
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s, while consuming energy. The renal tubular cells can also produce glucose. Glucose also can be found outside of living organisms in the ambient environment. Glucose concentrations in the atmosphere are detected via collection of samples by aircraft and are known to vary from location to location. For example, glucose concentrations in atmospheric air from inland China range from 0.8 to 20.1 pg/L, whereas east coastal China glucose concentrations range from 10.3 to 142 pg/L.


Glucose degradation

In humans, glucose is metabolized by glycolysis and the pentose phosphate pathway.H. Robert Horton, Laurence A. Moran, K. Gray Scrimgeour, Marc D. Perry, J. David Rawn: ''Biochemie'' . Pearson Studium; 4. aktualisierte Auflage 2008; ; pp. 490–496. Glycolysis is used by all living organisms,Brian K. Hall: ''Strickberger's Evolution''. Jones & Bartlett Publishers, 2013, , p. 164. with small variations, and all organisms generate energy from the breakdown of monosaccharides. In the further course of the metabolism, it can be completely degraded via oxidative decarboxylation, the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
(synonym ''Krebs cycle'') and the respiratory chain to water and carbon dioxide. If there is not enough oxygen available for this, the glucose degradation in animals occurs anaerobic to lactate via lactic acid fermentation and releases much less energy. Muscular lactate enters the liver through the bloodstream in mammals, where gluconeogenesis occurs ( Cori cycle). With a high supply of glucose, the metabolite acetyl-CoA from the Krebs cycle can also be used for
fatty acid synthesis In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes. Two ''De novo synthesis, de novo'' fatty acid syntheses can be distinguished: cytosolic fatty acid synthesis (FAS/FASI) ...
. Glucose is also used to replenish the body's glycogen stores, which are mainly found in liver and skeletal muscle. These processes are hormonally regulated. In other living organisms, other forms of fermentation can occur. The bacterium ''
Escherichia coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
'' can grow on nutrient media containing glucose as the sole carbon source. In some bacteria and, in modified form, also in archaea, glucose is degraded via the Entner-Doudoroff pathway. With glucose, a mechanism for gene regulation was discovered in ''E. coli'', the catabolite repression (formerly known as ''glucose effect''). Use of glucose as an energy source in cells is by either aerobic respiration, anaerobic respiration, or fermentation. The first step of glycolysis is the
phosphorylation In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writ ...
of glucose by a hexokinase to form glucose 6-phosphate. The main reason for the immediate phosphorylation of glucose is to prevent its diffusion out of the cell as the charged
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
group prevents glucose 6-phosphate from easily crossing the
cell membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
. Furthermore, addition of the high-energy phosphate group activates glucose for subsequent breakdown in later steps of glycolysis. In anaerobic respiration, one glucose molecule produces a net gain of two ATP molecules (four ATP molecules are produced during glycolysis through substrate-level phosphorylation, but two are required by enzymes used during the process). In aerobic respiration, a molecule of glucose is much more profitable in that a maximum net production of 30 or 32 ATP molecules (depending on the organism) is generated.
Tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
cells often grow comparatively quickly and consume an above-average amount of glucose by glycolysis, which leads to the formation of lactate, the end product of fermentation in mammals, even in the presence of oxygen. This is called the Warburg effect. For the increased uptake of glucose in tumors various SGLT and GLUT are overly produced. In
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom (biology), kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are est ...
, ethanol is fermented at high glucose concentrations, even in the presence of oxygen (which normally leads to respiration rather than fermentation). This is called the Crabtree effect. Glucose can also degrade to form carbon dioxide through abiotic means. This has been demonstrated to occur experimentally via oxidation and hydrolysis at 22 °C and a pH of 2.5.


Energy source

Glucose is a ubiquitous fuel in
biology Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
. It is used as an energy source in organisms, from bacteria to humans, through either aerobic respiration, anaerobic respiration (in bacteria), or
fermentation Fermentation is a type of anaerobic metabolism which harnesses the redox potential of the reactants to make adenosine triphosphate (ATP) and organic end products. Organic molecules, such as glucose or other sugars, are catabolized and reduce ...
. Glucose is the human body's key source of energy, through aerobic respiration, providing about 3.75  kilocalories (16  kilojoules) of food energy per gram. Breakdown of carbohydrates (e.g., starch) yields mono- and disaccharides, most of which is glucose. Through glycolysis and later in the reactions of the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
and oxidative phosphorylation, glucose is oxidized to eventually form
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
and water, yielding energy mostly in the form of
adenosine triphosphate Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
(ATP). The insulin reaction, and other mechanisms, regulate the concentration of glucose in the blood. The physiological caloric value of glucose, depending on the source, is 16.2 kilojoules per gramGeorg Schwedt: ''Zuckersüße Chemie'' . John Wiley & Sons, 2012, , p. 100. or 15.7 kJ/g (3.74 kcal/g). The high availability of carbohydrates from plant biomass has led to a variety of methods during evolution, especially in microorganisms, to utilize glucose for energy and carbon storage. Differences exist in which end product can no longer be used for energy production. The presence of individual genes, and their gene products, the enzymes, determine which reactions are possible. The metabolic pathway of glycolysis is used by almost all living beings. An essential difference in the use of glycolysis is the recovery of NADPH as a reductant for anabolism that would otherwise have to be generated indirectly. Glucose and oxygen supply almost all the energy for the
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
, so its availability influences
psychological Psychology is the scientific study of mind and behavior. Its subject matter includes the behavior of humans and nonhumans, both consciousness, conscious and Unconscious mind, unconscious phenomena, and mental processes such as thoughts, feel ...
processes. When glucose is low, psychological processes requiring mental effort (e.g.,
self-control Self-control is an aspect of inhibitory control, one of the core executive functions. Executive functions are cognitive processes that are necessary for regulating one's behavior in order to achieve specific goals. Defined more independen ...
, effortful decision-making) are impaired. In the brain, which is dependent on glucose and oxygen as the major source of energy, the glucose concentration is usually 4 to 6 mM (5 mM equals 90 mg/dL), but decreases to 2 to 3 mM when fasting. Confusion occurs below 1 mM and
coma A coma is a deep state of prolonged unconsciousness in which a person cannot be awakened, fails to Nociception, respond normally to Pain, painful stimuli, light, or sound, lacks a normal Circadian rhythm, sleep-wake cycle and does not initiate ...
at lower levels. The glucose in the blood is called
blood sugar The blood sugar level, blood sugar concentration, blood glucose level, or glycemia is the measure of glucose concentrated in the blood. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. For a 70 kg (1 ...
. Blood sugar levels are regulated by glucose-binding nerve cells in the
hypothalamus The hypothalamus (: hypothalami; ) is a small part of the vertebrate brain that contains a number of nucleus (neuroanatomy), nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrin ...
. In addition, glucose in the brain binds to glucose receptors of the reward system in the nucleus accumbens. The binding of glucose to the sweet receptor on the tongue induces a release of various hormones of energy metabolism, either through glucose or through other sugars, leading to an increased cellular uptake and lower blood sugar levels. Artificial sweeteners do not lower blood sugar levels. The blood sugar content of a healthy person in the short-time fasting state, e.g. after overnight fasting, is about 70 to 100 mg/dL of blood (4 to 5.5 mM). In blood plasma, the measured values are about 10–15% higher. In addition, the values in the arterial blood are higher than the concentrations in the venous blood since glucose is absorbed into the tissue during the passage of the capillary bed. Also in the capillary blood, which is often used for blood sugar determination, the values are sometimes higher than in the venous blood. The glucose content of the blood is regulated by the hormones
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main Anabolism, anabolic hormone of the body. It regulates the metabol ...
,
incretin Incretins are a group of metabolic hormones that decrease Blood sugar level, blood glucose levels. Incretins are released after eating and augment the secretion of insulin released from Pancreas, pancreatic beta cells of the islets of Langerhans ...
and glucagon. Insulin lowers the glucose level, glucagon increases it. Furthermore, the hormones adrenaline, thyroxine,
glucocorticoid Glucocorticoids (or, less commonly, glucocorticosteroids) are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every vertebra ...
s, somatotropin and adrenocorticotropin lead to an increase in the glucose level. There is also a hormone-independent regulation, which is referred to as glucose autoregulation. After food intake the blood sugar concentration increases. Values over 180 mg/dL in venous whole blood are pathological and are termed hyperglycemia, values below 40 mg/dL are termed hypoglycaemia. When needed, glucose is released into the bloodstream by glucose-6-phosphatase from glucose-6-phosphate originating from liver and kidney glycogen, thereby regulating the
homeostasis In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
of blood glucose concentration. In
ruminant Ruminants are herbivorous grazing or browsing artiodactyls belonging to the suborder Ruminantia that are able to acquire nutrients from plant-based food by fermenting it in a specialized stomach prior to digestion, principally through microb ...
s, the blood glucose concentration is lower (60 mg/dL in cattle and 40 mg/dL in sheep), because the carbohydrates are converted more by their gut microbiota into short-chain fatty acids.Harold A. Harper: ''Medizinische Biochemie''. Springer-Verlag, 2013, , p. 294. Some glucose is converted to lactic acid by astrocytes, which is then utilized as an energy source by brain cells; some glucose is used by intestinal cells and red blood cells, while the rest reaches the
liver The liver is a major metabolic organ (anatomy), organ exclusively found in vertebrates, which performs many essential biological Function (biology), functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of var ...
, adipose tissue and
muscle Muscle is a soft tissue, one of the four basic types of animal tissue. There are three types of muscle tissue in vertebrates: skeletal muscle, cardiac muscle, and smooth muscle. Muscle tissue gives skeletal muscles the ability to muscle contra ...
cells, where it is absorbed and stored as glycogen (under the influence of
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main Anabolism, anabolic hormone of the body. It regulates the metabol ...
). Liver cell glycogen can be converted to glucose and returned to the blood when insulin is low or absent; muscle cell glycogen is not returned to the blood because of a lack of enzymes. In fat cells, glucose is used to power reactions that synthesize some fat types and have other purposes. Glycogen is the body's "glucose energy storage" mechanism, because it is much more "space efficient" and less reactive than glucose itself. As a result of its importance in human health, glucose is an analyte in glucose tests that are common medical blood tests. Eating or fasting prior to taking a blood sample has an effect on analyses for glucose in the blood; a high fasting glucose blood sugar level may be a sign of prediabetes or
diabetes mellitus Diabetes mellitus, commonly known as diabetes, is a group of common endocrine diseases characterized by sustained hyperglycemia, high blood sugar levels. Diabetes is due to either the pancreas not producing enough of the hormone insulin, or th ...
. The
glycemic index The glycemic (glycaemic) index (GI; ) is a number from 0 to 100 assigned to a food, with pure glucose arbitrarily given the value of 100, which represents the relative rise in the blood glucose level two hours after consuming that food. The GI of ...
is an indicator of the speed of resorption and conversion to blood glucose levels from ingested carbohydrates, measured as the area under the curve of blood glucose levels after consumption in comparison to glucose (glucose is defined as 100).Richard A. Harvey, Denise R. Ferrier: ''Biochemistry''. 5th Edition, Lippincott Williams & Wilkins, 2011, , p. 366. The clinical importance of the glycemic index is controversial,U Satyanarayana: ''Biochemistry''. Elsevier Health Sciences, 2014, , p. 508. as foods with high fat contents slow the resorption of carbohydrates and lower the glycemic index, e.g. ice cream. An alternative indicator is the insulin index, measured as the impact of carbohydrate consumption on the blood insulin levels. The
glycemic load The glycemic load (GL) of food is a number that estimates how much the food will raise a person's blood glucose level after it is eaten. One unit of glycemic load approximates the effect of eating one gram of glucose. Glycemic load accounts for ho ...
is an indicator for the amount of glucose added to blood glucose levels after consumption, based on the glycemic index and the amount of consumed food.


Precursor

Organisms use glucose as a precursor for the synthesis of several important substances. Starch,
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
, and glycogen ("animal starch") are common glucose
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s (polysaccharides). Some of these polymers (starch or glycogen) serve as energy stores, while others (cellulose and
chitin Chitin (carbon, C8hydrogen, H13oxygen, O5nitrogen, N)n ( ) is a long-chain polymer of N-Acetylglucosamine, ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is the second most abundant polysaccharide in nature (behind only cell ...
, which is made from a derivative of glucose) have structural roles. Oligosaccharides of glucose combined with other sugars serve as important energy stores. These include lactose, the predominant sugar in milk, which is a glucose-galactose disaccharide, and sucrose, another disaccharide which is composed of glucose and fructose. Glucose is also added onto certain proteins and
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
s in a process called
glycosylation Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
. This is often critical for their functioning. The enzymes that join glucose to other molecules usually use phosphorylated glucose to power the formation of the new bond by coupling it with the breaking of the glucose-phosphate bond. Other than its direct use as a monomer, glucose can be broken down to synthesize a wide variety of other biomolecules. This is important, as glucose serves both as a primary store of energy and as a source of organic carbon. Glucose can be broken down and converted into lipids. It is also a precursor for the synthesis of other important molecules such as
vitamin C Vitamin C (also known as ascorbic acid and ascorbate) is a water-soluble vitamin found in citrus and other fruits, berries and vegetables. It is also a generic prescription medication and in some countries is sold as a non-prescription di ...
(ascorbic acid). In living organisms, glucose is converted to several other chemical compounds that are the starting material for various
metabolic pathway In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell (biology), cell. The reactants, products, and Metabolic intermediate, intermediates of an enzymatic reaction are known as metabolites, which are ...
s. Among them, all other monosaccharidesPeter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' . Springer-Verlag, 2014, , p. 27. such as fructose (via the polyol pathway),Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' . Springer-Verlag, 2014, , p. 199, 200. mannose (the epimer of glucose at position 2), galactose (the epimer at position 4), fucose, various uronic acids and the amino sugars are produced from glucose.Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' . Springer-Verlag, 2014, , p. 214. In addition to the phosphorylation to glucose-6-phosphate, which is part of the glycolysis, glucose can be oxidized during its degradation to glucono-1,5-lactone. Glucose is used in some bacteria as a building block in the trehalose or the dextran biosynthesis and in animals as a building block of glycogen. Glucose can also be converted from bacterial xylose isomerase to fructose. In addition, glucose metabolites produce all nonessential amino acids, sugar alcohols such as mannitol and
sorbitol Sorbitol (), less commonly known as glucitol (), is a sugar alcohol with a sweet taste which the human body metabolizes slowly. It can be obtained by reduction of glucose, which changes the converted aldehyde group (−CHO) to a primary alco ...
,
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
s,
cholesterol Cholesterol is the principal sterol of all higher animals, distributed in body Tissue (biology), tissues, especially the brain and spinal cord, and in Animal fat, animal fats and oils. Cholesterol is biosynthesis, biosynthesized by all anima ...
and
nucleic acid Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a pentose, 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nuclei ...
s. Finally, glucose is used as a building block in the
glycosylation Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
of proteins to glycoproteins, glycolipids,
peptidoglycan Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like layer (sacculus) that surrounds the bacterial cytoplasmic membrane. The sugar component consists of alternating ...
s, glycosides and other substances (catalyzed by glycosyltransferases) and can be cleaved from them by glycosidases.


Regulatory role in cell differentiation

In addition to its well-known function as a cellular energy source, glucose has been identified as a master regulator of tissue maturation. A 2025 study by Stanford Medicine uncovered that glucose, in its intact (non-metabolized) form, can bind to various regulatory proteins involved in gene expression. One such protein is IRF6, which alters its conformation upon glucose binding, thereby influencing the expression of genes associated with stem cell differentiation. This regulatory role is independent of glucose’s catabolic function and has been observed across multiple tissue types, including skin, bone, fat, and white blood cells. The research demonstrated that even glucose analogs incapable of metabolism could promote differentiation, suggesting a signaling function for glucose. These findings have potential implications in understanding and treating diseases characterized by impaired differentiation, such as diabetes and certain cancers.


Pathology


Diabetes

Diabetes is a metabolic disorder where the body is unable to regulate levels of glucose in the blood either because of a lack of insulin in the body or the failure, by cells in the body, to respond properly to insulin. Each of these situations can be caused by persistently high elevations of blood glucose levels, through pancreatic burnout and insulin resistance. The
pancreas The pancreas (plural pancreases, or pancreata) is an Organ (anatomy), organ of the Digestion, digestive system and endocrine system of vertebrates. In humans, it is located in the abdominal cavity, abdomen behind the stomach and functions as a ...
is the organ responsible for the secretion of the hormones insulin and glucagon. Insulin is a hormone that regulates glucose levels, allowing the body's cells to absorb and use glucose. Without it, glucose cannot enter the cell and therefore cannot be used as fuel for the body's functions. If the pancreas is exposed to persistently high elevations of blood glucose levels, the insulin-producing cells in the pancreas could be damaged, causing a lack of insulin in the body. Insulin resistance occurs when the pancreas tries to produce more and more insulin in response to persistently elevated blood glucose levels. Eventually, the rest of the body becomes resistant to the insulin that the pancreas is producing, thereby requiring more insulin to achieve the same blood glucose-lowering effect, and forcing the pancreas to produce even more insulin to compete with the resistance. This negative spiral contributes to pancreatic burnout, and the disease progression of diabetes. To monitor the body's response to blood glucose-lowering therapy, glucose levels can be measured. Blood glucose monitoring can be performed by multiple methods, such as the fasting glucose test which measures the level of glucose in the blood after 8 hours of fasting. Another test is the 2-hour glucose tolerance test (GTT)for this test, the person has a fasting glucose test done, then drinks a 75-gram glucose drink and is retested. This test measures the ability of the person's body to process glucose. Over time the blood glucose levels should decrease as insulin allows it to be taken up by cells and exit the blood stream.


Hypoglycemia management

Individuals with diabetes or other conditions that result in low blood sugar often carry small amounts of sugar in various forms. One sugar commonly used is glucose, often in the form of glucose tablets (glucose pressed into a tablet shape sometimes with one or more other ingredients as a binder), hard candy, or sugar packet.


Sources

Most dietary carbohydrates contain glucose, either as their only building block (as in the polysaccharides starch and glycogen), or together with another monosaccharide (as in the hetero-polysaccharides sucrose and lactose). Unbound glucose is one of the main ingredients of honey. Glucose is extremely abundant and has been isolated from a variety of natural sources across the world, including male cones of the coniferous tree ''Wollemia nobilis'' in Rome, the roots of ''Ilex asprella'' plants in China, and straws from rice in California.


Commercial production

Glucose is produced industrially from starch by enzymatic
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
using glucose amylase or by the use of acids. Enzymatic hydrolysis has largely displaced acid-catalyzed hydrolysis reactions.P. J. Fellows: ''Food Processing Technology. Woodhead Publishing'', 2016, , p. 197. The result is glucose syrup (enzymatically with more than 90% glucose in the dry matter) with an annual worldwide production volume of 20 million tonnes (as of 2011).Thomas Becker, Dietmar Breithaupt, Horst Werner Doelle, Armin Fiechter, Günther Schlegel, Sakayu Shimizu, Hideaki Yamada: ''Biotechnology'', in: ''Ullmann's Encyclopedia of Industrial Chemistry'', 7th Edition, Wiley-VCH, 2011. . Volume 6, p. 48. This is the reason for the former common name "starch sugar". The amylases most often come from '' Bacillus licheniformis''The Amylase Research Society of Japan: ''Handbook of Amylases and Related Enzymes''. Elsevier, 2014, , p. 195. or ''
Bacillus subtilis ''Bacillus subtilis'' (), known also as the hay bacillus or grass bacillus, is a gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus ''Bacill ...
'' (strain MN-385), which are more thermostable than the originally used enzymes. Starting in 1982, pullulanases from '' Aspergillus niger'' were used in the production of glucose syrup to convert amylopectin to starch (amylose), thereby increasing the yield of glucose. The reaction is carried out at a pH = 4.6–5.2 and a temperature of 55–60 °C.
Corn syrup Corn syrup is a food syrup that is made from the starch of corn/maize and contains varying amounts of sugars: glucose, maltose and higher oligosaccharides, depending on the grade. Corn syrup is used in foods to soften Mouthfeel, texture, add vol ...
has between 20% and 95% glucose in the dry matter. The Japanese form of the glucose syrup, Mizuame, is made from sweet potato or
rice Rice is a cereal grain and in its Domestication, domesticated form is the staple food of over half of the world's population, particularly in Asia and Africa. Rice is the seed of the grass species ''Oryza sativa'' (Asian rice)—or, much l ...
starch. Many crops can be used as the source of starch.
Maize Maize (; ''Zea mays''), also known as corn in North American English, is a tall stout grass that produces cereal grain. It was domesticated by indigenous peoples in southern Mexico about 9,000 years ago from wild teosinte. Native American ...
, rice,
wheat Wheat is a group of wild and crop domestication, domesticated Poaceae, grasses of the genus ''Triticum'' (). They are Agriculture, cultivated for their cereal grains, which are staple foods around the world. Well-known Taxonomy of wheat, whe ...
,
cassava ''Manihot esculenta'', common name, commonly called cassava, manioc, or yuca (among numerous regional names), is a woody shrub of the spurge family, Euphorbiaceae, native to South America, from Brazil, Paraguay and parts of the Andes. Although ...
, potato,
barley Barley (), a member of the grass family, is a major cereal grain grown in temperate climates globally. It was one of the first cultivated grains; it was domesticated in the Fertile Crescent around 9000 BC, giving it nonshattering spikele ...
, sweet potato,Alan Davidson: ''The Oxford Companion to Food''. OUP Oxford, 2014, , p. 527. corn husk and
sago Sago () is a starch extracted from the pith, or spongy core tissue, of various tropical palm stems, especially those of ''Metroxylon sagu''. It is a major staple food for the lowland peoples of New Guinea and the Maluku Islands, where it is c ...
are all used in various parts of the world. In the
United States The United States of America (USA), also known as the United States (U.S.) or America, is a country primarily located in North America. It is a federal republic of 50 U.S. state, states and a federal capital district, Washington, D.C. The 48 ...
,
corn starch Cornflour, cornstarch, maize starch, or corn starch (American English) is the starch derived from corn (maize) grain. The starch is obtained from the endosperm of the seed, kernel. Corn starch is a common food ingredient, often used to thick ...
(from maize) is used almost exclusively. Some commercial glucose occurs as a component of invert sugar, a roughly 1:1 mixture of glucose and fructose that is produced from sucrose. In principle, cellulose could be hydrolyzed to glucose, but this process is not yet commercially practical.


Conversion to fructose

In the US, almost exclusively corn (more precisely, corn syrup) is used as glucose source for the production of isoglucose, which is a mixture of glucose and fructose, since fructose has a higher sweetening powerwith same physiological calorific value of 374 kilocalories per 100 g. The annual world production of isoglucose is 8 million tonnes (as of 2011). When made from corn syrup, the final product is high-fructose corn syrup (HFCS).


Commercial usage

Glucose is mainly used for the production of fructose and of glucose-containing foods. In foods, it is used as a sweetener, humectant, to increase the
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
and to create a softer mouthfeel. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of
alcoholic beverage Drinks containing alcohol (drug), alcohol are typically divided into three classes—beers, wines, and Distilled beverage, spirits—with alcohol content typically between 3% and 50%. Drinks with less than 0.5% are sometimes considered Non-al ...
s. Most soft drinks in the US use HFCS-55 (with a fructose content of 55% in the dry mass), while most other HFCS-sweetened foods in the US use HFCS-42 (with a fructose content of 42% in the dry mass). In Mexico, on the other hand, soft drinks are sweetened by cane sugar, which has a higher sweetening power. In addition, glucose syrup is used, inter alia, in the production of
confectionery Confectionery is the Art (skill), art of making confections, or sweet foods. Confections are items that are rich in sugar and carbohydrates, although exact definitions are difficult. In general, however, confections are divided into two bro ...
such as candies, toffee and fondant.Steve T. Beckett: ''Beckett's Industrial Chocolate Manufacture and Use''. John Wiley & Sons, 2017, , p. 82. Typical chemical reactions of glucose when heated under water-free conditions are caramelization and, in presence of amino acids, the Maillard reaction. In addition, various organic acids can be biotechnologically produced from glucose, for example by fermentation with '' Clostridium thermoaceticum'' to produce
acetic acid Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main compone ...
, with '' Penicillium notatum'' for the production of araboascorbic acid, with '' Rhizopus delemar'' for the production of fumaric acid, with '' Aspergillus niger'' for the production of gluconic acid, with '' Candida brumptii'' to produce isocitric acid, with '' Aspergillus terreus'' for the production of itaconic acid, with '' Pseudomonas fluorescens'' for the production of 2-ketogluconic acid, with '' Gluconobacter suboxydans'' for the production of 5-ketogluconic acid, with '' Aspergillus oryzae'' for the production of kojic acid, with '' Lactobacillus delbrueckii'' for the production of lactic acid, with '' Lactobacillus brevis'' for the production of malic acid, with '' Propionibacter shermanii'' for the production of
propionic acid Propionic acid (, from the Greek language, Greek words πρῶτος : ''prōtos'', meaning "first", and πίων : ''píōn'', meaning "fat"; also known as propanoic acid) is a naturally occurring carboxylic acid with chemical formula . It is a ...
, with '' Pseudomonas aeruginosa'' for the production of
pyruvic acid Pyruvic acid (CH3COCOOH) is the simplest of the keto acids, alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate acid, conjugate base, CH3COCOO−, is an metabolic intermediate, intermediate in several m ...
and with '' Gluconobacter suboxydans'' for the production of tartaric acid.James A. Kent: ''Riegel's Handbook of Industrial Chemistry''. Springer Science & Business Media, 2013, , p. 938. Potent, bioactive natural products like triptolide that inhibit mammalian transcription via inhibition of the XPB subunit of the general transcription factor TFIIH has been recently reported as a glucose conjugate for targeting hypoxic cancer cells with increased glucose transporter expression. Recently, glucose has been gaining commercial use as a key component of "kits" containing lactic acid and insulin intended to induce hypoglycemia and hyperlactatemia to combat different cancers and infections.


Analysis

When a glucose molecule is to be detected at a certain position in a larger molecule, nuclear magnetic resonance spectroscopy,
X-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
analysis or lectin immunostaining is performed with concanavalin A reporter enzyme conjugate, which binds only glucose or mannose.


Classical qualitative detection reactions

These reactions have only historical significance:


Fehling test

The Fehling test is a classic method for the detection of aldoses.H. Fehling: ''Quantitative Bestimmung des Zuckers im Harn''. In: '' Archiv für physiologische Heilkunde'' (1848), volume 7, p. 64–73 (in German). Due to mutarotation, glucose is always present to a small extent as an open-chain aldehyde. By adding the Fehling reagents (Fehling (I) solution and Fehling (II) solution), the aldehyde group is oxidized to a
carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an Substituent, R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl ...
, while the Cu2+ tartrate complex is reduced to Cu+ and forms a brick red precipitate (Cu2O).


Tollens test

In the Tollens test, after addition of ammoniacal AgNO3 to the sample solution, glucose reduces Ag+ to elemental
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
.


Barfoed test

In Barfoed's test, a solution of dissolved copper acetate, sodium acetate and acetic acid is added to the solution of the sugar to be tested and subsequently heated in a water bath for a few minutes. Glucose and other monosaccharides rapidly produce a reddish color and reddish brown copper(I) oxide (Cu2O).


Nylander's test

As a reducing sugar, glucose reacts in the Nylander's test.


Other tests

Upon heating a dilute
potassium hydroxide Potassium hydroxide is an inorganic compound with the formula K OH, and is commonly called caustic potash. Along with sodium hydroxide (NaOH), KOH is a prototypical strong base. It has many industrial and niche applications, most of which utili ...
solution with glucose to 100 °C, a strong reddish browning and a caramel-like odor develops.Georg Schwedt: ''Zuckersüße Chemie''. John Wiley & Sons, 2012, , p. 102 (in German). Concentrated
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
dissolves dry glucose without blackening at room temperature forming sugar sulfuric acid. In a yeast solution, alcoholic fermentation produces carbon dioxide in the ratio of 2.0454 molecules of glucose to one molecule of CO2. Glucose forms a black mass with stannous chloride. In an ammoniacal silver solution, glucose (as well as lactose and dextrin) leads to the deposition of silver. In an ammoniacal lead acetate solution, white lead glycoside is formed in the presence of glucose, which becomes less soluble on cooking and turns brown. In an ammoniacal copper solution, yellow copper oxide hydrate is formed with glucose at room temperature, while red copper oxide is formed during boiling (same with dextrin, except for with an ammoniacal copper acetate solution). With Hager's reagent, glucose forms mercury oxide during boiling. An alkaline bismuth solution is used to precipitate elemental, black-brown bismuth with glucose. Glucose boiled in an ammonium molybdate solution turns the solution blue. A solution with indigo carmine and sodium carbonate destains when boiled with glucose.


Instrumental quantification


Refractometry and polarimetry

In concentrated solutions of glucose with a low proportion of other carbohydrates, its concentration can be determined with a polarimeter. For sugar mixtures, the concentration can be determined with a refractometer, for example in the Oechsle determination in the course of the production of wine.


Photometric enzymatic methods in solution

The enzyme glucose oxidase (GOx) converts glucose into gluconic acid and hydrogen peroxide while consuming oxygen. Another enzyme, peroxidase, catalyzes a chromogenic reaction (Trinder reaction) of
phenol Phenol (also known as carbolic acid, phenolic acid, or benzenol) is an aromatic organic compound with the molecular formula . It is a white crystalline solid that is volatile and can catch fire. The molecule consists of a phenyl group () ...
with 4-aminoantipyrine to a purple dye.


Photometric test-strip method

The test-strip method employs the above-mentioned enzymatic conversion of glucose to gluconic acid to form hydrogen peroxide. The reagents are immobilised on a polymer matrix, the so-called test strip, which assumes a more or less intense color. This can be measured reflectometrically at 510 nm with the aid of an LED-based handheld photometer. This allows routine blood sugar determination by nonscientists. In addition to the reaction of phenol with 4-aminoantipyrine, new chromogenic reactions have been developed that allow photometry at higher wavelengths (550 nm, 750 nm).


Amperometric glucose sensor

The electroanalysis of glucose is also based on the enzymatic reaction mentioned above. The produced hydrogen peroxide can be amperometrically quantified by anodic oxidation at a potential of 600 mV. The GOx is immobilized on the electrode surface or in a membrane placed close to the electrode. Precious metals such as platinum or gold are used in electrodes, as well as carbon nanotube electrodes, which e.g. are doped with boron. Cu–CuO nanowires are also used as enzyme-free amperometric electrodes, reaching a detection limit of 50 μmol/L. A particularly promising method is the so-called "enzyme wiring", where the electron flowing during the oxidation is transferred via a molecular wire directly from the enzyme to the electrode.


Other sensory methods

There are a variety of other chemical sensors for measuring glucose. Given the importance of glucose analysis in the life sciences, numerous optical probes have also been developed for saccharides based on the use of boronic acids, which are particularly useful for intracellular sensory applications where other (optical) methods are not or only conditionally usable. In addition to the organic boronic acid derivatives, which often bind highly specifically to the 1,2-diol groups of sugars, there are also other probe concepts classified by functional mechanisms which use selective glucose-binding proteins (e.g. concanavalin A) as a receptor. Furthermore, methods were developed which indirectly detect the glucose concentration via the concentration of metabolized products, e.g. by the consumption of oxygen using fluorescence-optical sensors. Finally, there are enzyme-based concepts that use the intrinsic absorbance or fluorescence of (fluorescence-labeled) enzymes as reporters.


Copper iodometry

Glucose can be quantified by copper iodometry.


Chromatographic methods

In particular, for the analysis of complex mixtures containing glucose, e.g. in honey, chromatographic methods such as high performance liquid chromatography and gas chromatography are often used in combination with mass spectrometry. Taking into account the isotope ratios, it is also possible to reliably detect honey adulteration by added sugars with these methods. Derivatization using silylation reagents is commonly used. Also, the proportions of di- and trisaccharides can be quantified.


In vivo analysis

Glucose uptake in cells of organisms is measured with 2-deoxy-D-glucose or fluorodeoxyglucose.Donard Dwyer: ''Glucose Metabolism in the Brain''. Academic Press, 2002, , p. XIII. (18F)fluorodeoxyglucose is used as a tracer in positron emission tomography in oncology and neurology, Gesellschaft Deutscher Chemiker
wayback=20100331071121 ''Anlagen zum Positionspapier der Fachgruppe Nuklearchemie''
, February 2000.
where it is by far the most commonly used diagnostic agent.


References


External links

* {{Authority control Chemical pathology Furanoses Glycolysis Nutrition Pyranoses World Health Organization essential medicines