HOME

TheInfoList



OR:

The chalcogens (ore forming) ( ) are the
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s in group 16 of the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
. This group is also known as the oxygen family. Group 16 consists of the elements
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
(O),
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
(S),
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
(Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word () principally meaning
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
(the term was also used for
bronze Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals (such as phosphorus) or metalloid ...
,
brass Brass is an alloy of copper and zinc, in proportions which can be varied to achieve different colours and mechanical, electrical, acoustic and chemical properties, but copper typically has the larger proportion, generally copper and zinc. I ...
, any metal in the poetic sense, ore and
coin A coin is a small object, usually round and flat, used primarily as a medium of exchange or legal tender. They are standardized in weight, and produced in large quantities at a mint in order to facilitate trade. They are most often issued by ...
), and the Latinized Greek word , meaning ''born'' or ''produced''. Sulfur has been known since antiquity, and oxygen was recognized as an element in the 18th century. Selenium, tellurium and polonium were discovered in the 19th century, and livermorium in 2000. All of the chalcogens have six valence electrons, leaving them two electrons short of a full outer shell. Their most common
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
s are −2, +2, +4, and +6. They have relatively low atomic radii, especially the lighter ones. All of the naturally occurring chalcogens have some role in biological functions, either as a nutrient or a toxin. Selenium is an important nutrient (among others as a building block of selenocysteine) but is also commonly toxic. Tellurium often has unpleasant effects (although some organisms can use it), and polonium (especially the
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
polonium-210) is always harmful as a result of its radioactivity. Sulfur has more than 20 allotropes, oxygen has nine, selenium has at least eight, polonium has two, and only one crystal structure of tellurium has so far been discovered. There are numerous organic chalcogen compounds. Not counting oxygen, organic sulfur compounds are generally the most common, followed by organic selenium compounds and organic tellurium compounds. This trend also occurs with chalcogen pnictides and compounds containing chalcogens and
carbon group The carbon group is a group (periodic table), periodic table group consisting of carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), and flerovium (Fl). It lies within the p-block. In modern International Union of Pure and Applied Ch ...
elements. Oxygen is generally obtained by separation of air into nitrogen and oxygen. Sulfur is extracted from oil and natural gas. Selenium and tellurium are produced as byproducts of copper refining. Polonium is most available in naturally occurring actinide-containing materials. Livermorium has been synthesized in particle accelerators. The primary use of elemental oxygen is in steelmaking. Sulfur is mostly converted into
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
, which is heavily used in the chemical industry. Selenium's most common application is glassmaking. Tellurium compounds are mostly used in optical disks, electronic devices, and solar cells. Some of polonium's applications are due to its radioactivity.


Properties


Atomic and physical

Chalcogens show similar patterns in electron configuration, especially in the outermost shells, where they all have the same number of valence electrons, resulting in similar trends in chemical behavior: All chalcogens have six valence electrons. All of the solid, stable chalcogens are soft and do not conduct heat well.
Electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
decreases towards the chalcogens with higher atomic numbers. Density, melting and boiling points, and atomic and ionic radii tend to increase towards the chalcogens with higher atomic numbers.


Isotopes

Out of the six known chalcogens, one (oxygen) has an atomic number equal to a nuclear magic number, which means that their atomic nuclei tend to have increased stability against radioactive decay. Oxygen has three stable isotopes, and 14 unstable ones. Sulfur has four stable isotopes, 20 radioactive ones, and one
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
. Selenium has six observationally stable or nearly stable isotopes, 26 radioactive isotopes, and 9 isomers. Tellurium has eight stable or nearly stable isotopes, 31 unstable ones, and 17 isomers. Polonium has 42 isotopes, none of which are stable. It has an additional 28 isomers. In addition to the stable isotopes, some radioactive chalcogen isotopes occur in nature, either because they are decay products, such as 210Po, because they are primordial, such as 82Se, because of
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
spallation, or via
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactiv ...
of uranium. Livermorium isotopes 288Lv through 293Lv have been discovered; the most stable livermorium isotope is 293Lv, which has a half-life of 0.061 seconds. With the exception of livermorium, all chalcogens have at least one naturally occurring radioisotope: oxygen has trace 15O, sulfur has trace 35S, selenium has 82Se, tellurium has 128Te and 130Te, and polonium has 210Po. Among the lighter chalcogens (oxygen and sulfur), the most neutron-poor isotopes undergo proton emission, the moderately neutron-poor isotopes undergo
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
or β+ decay, the moderately neutron-rich isotopes undergo β decay, and the most neutron rich isotopes undergo
neutron emission Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a Atomic nucleus, nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photodisin ...
. The middle chalcogens (selenium and tellurium) have similar decay tendencies as the lighter chalcogens, but no proton-emitting isotopes have been observed, and some of the most neutron-deficient isotopes of tellurium undergo
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
. Polonium isotopes tend to decay via alpha or beta decay. Isotopes with nonzero
nuclear spin Nuclear may refer to: Physics Relating to the nucleus of the atom: * Nuclear engineering * Nuclear physics * Nuclear power * Nuclear reactor * Nuclear weapon * Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics * Nuclear space * ...
s are more abundant in nature among the chalcogens selenium and tellurium than they are with sulfur.


Allotropes

Oxygen's most common allotrope is diatomic oxygen, or O2, a reactive paramagnetic molecule that is ubiquitous to
aerobic organism An aerobic organism or aerobe is an organism that can survive and grow in an oxygenated environment. The ability to exhibit aerobic respiration may yield benefits to the aerobic organism, as aerobic respiration yields more energy than anaerobic ...
s and has a blue color in its liquid state. Another allotrope is O3, or
ozone Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
, which is three oxygen atoms bonded together in a bent formation. There is also an allotrope called tetraoxygen, or O4, and six allotropes of solid oxygen including "red oxygen", which has the formula O8. Sulfur has over 20 known allotropes, which is more than any other element except
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
. The most common allotropes are in the form of eight-atom rings, but other molecular allotropes that contain as few as two atoms or as many as 20 are known. Other notable sulfur allotropes include rhombic sulfur and
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three Vector (geometric), vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in t ...
sulfur. Rhombic sulfur is the more stable of the two allotropes. Monoclinic sulfur takes the form of long needles and is formed when liquid sulfur is cooled to slightly below its melting point. The atoms in liquid sulfur are generally in the form of long chains, but above 190 °C, the chains begin to break down. If liquid sulfur above 190 °C is frozen very rapidly, the resulting sulfur is amorphous or "plastic" sulfur. Gaseous sulfur is a mixture of diatomic sulfur (S2) and 8-atom rings. Selenium has at least eight distinct allotropes. The gray allotrope, commonly referred to as the "metallic" allotrope, despite not being a metal, is stable and has a hexagonal
crystal structure In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that repeat ...
. The gray allotrope of selenium is soft, with a
Mohs hardness The Mohs scale ( ) of mineral hardness is a qualitative ordinal scale, from 1 to 10, characterizing scratch resistance of mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fair ...
of 2, and brittle. Four other allotropes of selenium are
metastable In chemistry and physics, metastability is an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball is onl ...
. These include two
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three Vector (geometric), vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in t ...
red allotropes and two
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
allotropes, one of which is red and one of which is black. The red allotrope converts to the black allotrope in the presence of heat. The gray allotrope of selenium is made from spirals on selenium atoms, while one of the red allotropes is made of stacks of selenium rings (Se8). Tellurium is not known to have any allotropes, although its typical form is hexagonal. Polonium has two allotropes, which are known as α-polonium and β-polonium. α-polonium has a cubic crystal structure and converts to the rhombohedral β-polonium at 36 °C. The chalcogens have varying crystal structures. Oxygen's crystal structure is
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three Vector (geometric), vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in t ...
, sulfur's is orthorhombic, selenium and tellurium have the
hexagonal In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is d ...
crystal structure, while polonium has a cubic crystal structure.


Chemical

Oxygen, sulfur, and selenium are nonmetals, and tellurium is a
metalloid A metalloid is a chemical element which has a preponderance of material property, properties in between, or that are a mixture of, those of metals and Nonmetal (chemistry), nonmetals. The word metalloid comes from the Latin language, Latin ''meta ...
, meaning that its chemical properties are between those of a
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
and those of a nonmetal. It is not certain whether polonium is a metal or a metalloid. Some sources refer to polonium as a metalloid, although it has some metallic properties. Also, some allotropes of selenium display characteristics of a metalloid, even though selenium is usually considered a nonmetal. Even though oxygen is a chalcogen, its chemical properties are different from those of other chalcogens. One reason for this is that the heavier chalcogens have vacant d-orbitals. Oxygen's electronegativity is also much higher than those of the other chalcogens. This makes oxygen's electric polarizability several times lower than those of the other chalcogens. For
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
ing a chalcogen may accept two electrons according to the
octet rule The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The ru ...
, leaving two
lone pair In chemistry, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bondIUPAC ''Gold Book'' definition''lone (electron) pair''/ref> and is sometimes called an unshared pair or non-bonding pair. Lone ...
s. When an atom forms two single bonds, they form an angle between 90° and 120°. In 1+
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s, such as , a chalcogen forms three molecular orbitals arranged in a trigonal pyramidal fashion and one lone pair. Double bonds are also common in chalcogen compounds, for example in chalcogenates (see below). The oxidation number of the most common chalcogen compounds with positive metals is −2. However the tendency for chalcogens to form compounds in the −2 state decreases towards the heavier chalcogens. Other oxidation numbers, such as −1 in pyrite and
peroxide In chemistry, peroxides are a group of Chemical compound, compounds with the structure , where the R's represent a radical (a portion of a complete molecule; not necessarily a free radical) and O's are single oxygen atoms. Oxygen atoms are joined ...
, do occur. The highest formal oxidation number is +6. This oxidation number is found in sulfates, selenates, tellurates, polonates, and their corresponding acids, such as
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
. Oxygen is the most electronegative element except for
fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
, and forms compounds with almost all of the chemical elements, including some of the
noble gas The noble gases (historically the inert gases, sometimes referred to as aerogens) are the members of Group (periodic table), group 18 of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) and, in some ...
es. It commonly bonds with many metals and metalloids to form
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
s, including
iron oxide An iron oxide is a chemical compound composed of iron and oxygen. Several iron oxides are recognized. Often they are non-stoichiometric. Ferric oxyhydroxides are a related class of compounds, perhaps the best known of which is rust. Iron ...
, titanium oxide, and silicon oxide. Oxygen's most common
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
is −2, and the oxidation state −1 is also relatively common. With
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
it forms water and
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
. Organic oxygen compounds are ubiquitous in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the science, scientific study of the structure, properties, and reactions of organic compounds and organic matter, organic materials, i.e., matter in its various forms that contain ...
. Sulfur's oxidation states are −2, +2, +4, and +6. Sulfur-containing analogs of oxygen compounds often have the prefix ''thio-''. Sulfur's chemistry is similar to oxygen's, in many ways. One difference is that sulfur-sulfur double bonds are far weaker than oxygen-oxygen double bonds, but sulfur-sulfur single bonds are stronger than oxygen-oxygen single bonds. Organic sulfur compounds such as thiols have a strong specific smell, and a few are utilized by some organisms. Selenium's oxidation states are −2, +4, and +6. Selenium, like most chalcogens, bonds with oxygen. There are some organic selenium compounds, such as selenoproteins. Tellurium's oxidation states are −2, +2, +4, and +6. Tellurium forms the oxides tellurium monoxide, tellurium dioxide, and tellurium trioxide. Polonium's oxidation states are +2 and +4. There are many acids containing chalcogens, including sulfuric acid,
sulfurous acid Sulfuric(IV) acid (United Kingdom spelling: sulphuric(IV) acid), also known as sulfurous (UK: sulphurous) acid and thionic acid, is the chemical compound with the chemical formula, formula . Raman spectroscopy, Raman spectra of solutions o ...
, selenic acid, and telluric acid. All hydrogen chalcogenides are toxic except for
water Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
. Oxygen ions often come in the forms of
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
ions (),
peroxide In chemistry, peroxides are a group of Chemical compound, compounds with the structure , where the R's represent a radical (a portion of a complete molecule; not necessarily a free radical) and O's are single oxygen atoms. Oxygen atoms are joined ...
ions (), and hydroxide ions (). Sulfur ions generally come in the form of
sulfide Sulfide (also sulphide in British English) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to large families o ...
s (), bisulfides (), sulfites (), sulfates (), and
thiosulfate Thiosulfate ( IUPAC-recommended spelling; sometimes thiosulphate in British English) is an oxyanion of sulfur with the chemical formula . Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, ...
s (). Selenium ions usually come in the form of selenides (), selenites () and selenates (). Tellurium ions often come in the form of tellurates (). Molecules containing metal bonded to chalcogens are common as minerals. For example, pyrite (FeS2) is an
iron ore Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the f ...
, and the rare mineral calaverite is the ditelluride . Although all group 16 elements of the periodic table, including oxygen, can be defined as chalcogens, oxygen and oxides are usually distinguished from chalcogens and chalcogenides. The term ''chalcogenide'' is more commonly reserved for
sulfide Sulfide (also sulphide in British English) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to large families o ...
s, selenides, and tellurides, rather than for
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
s. Except for polonium, the chalcogens are all fairly similar to each other chemically. They all form X2− ions when reacting with electropositive metals.
Sulfide mineral The sulfide minerals are a class of minerals containing sulfide (S2−) or disulfide () as the major anion. Some sulfide minerals are economically important as metal ores. The sulfide class also includes the selenide mineral, selenides, the tell ...
s and analogous compounds produce gases upon reaction with oxygen.


Compounds


With halogens

Chalcogens also form compounds with halogens known as chalcohalides, or chalcogen halides. The majority of simple chalcogen halides are well-known and widely used as chemical reagents. However, more complicated chalcogen halides, such as sulfenyl, sulfonyl, and sulfuryl halides, are less well known to science. Out of the compounds consisting purely of chalcogens and halogens, there are a total of 13 chalcogen fluorides, nine chalcogen chlorides, eight chalcogen bromides, and six chalcogen iodides that are known. The heavier chalcogen halides often have significant molecular interactions. Sulfur fluorides with low valences are fairly unstable and little is known about their properties. However, sulfur fluorides with high valences, such as sulfur hexafluoride, are stable and well-known. Sulfur tetrafluoride is also a well-known sulfur fluoride. Certain selenium fluorides, such as selenium difluoride, have been produced in small amounts. The crystal structures of both selenium tetrafluoride and tellurium tetrafluoride are known. Chalcogen chlorides and bromides have also been explored. In particular, selenium dichloride and sulfur dichloride can react to form organic selenium compounds. Dichalcogen dihalides, such as Se2Cl2 also are known to exist. There are also mixed chalcogen-halogen compounds. These include SeSX, with X being chlorine or bromine. Such compounds can form in mixtures of sulfur dichloride and selenium halides. These compounds have been fairly recently structurally characterized, as of 2008. In general, diselenium and disulfur chlorides and bromides are useful chemical reagents. Chalcogen halides with attached metal atoms are soluble in organic solutions. One example of such a compound is . Unlike selenium chlorides and bromides, selenium iodides have not been isolated, as of 2008, although it is likely that they occur in solution. Diselenium diiodide, however, does occur in equilibrium with selenium atoms and iodine molecules. Some tellurium halides with low valences, such as and , form
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s when in the solid state. These tellurium halides can be synthesized by the reduction of pure tellurium with superhydride and reacting the resulting product with tellurium tetrahalides. Ditellurium dihalides tend to get less stable as the halides become lower in atomic number and atomic mass. Tellurium also forms iodides with even fewer iodine atoms than diiodides. These include TeI and Te2I. These compounds have extended structures in the solid state. Halogens and chalcogens can also form halochalcogenate
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s.


Organic

Alcohol Alcohol may refer to: Common uses * Alcohol (chemistry), a class of compounds * Ethanol, one of several alcohols, commonly known as alcohol in everyday life ** Alcohol (drug), intoxicant found in alcoholic beverages ** Alcoholic beverage, an alco ...
s,
phenol Phenol (also known as carbolic acid, phenolic acid, or benzenol) is an aromatic organic compound with the molecular formula . It is a white crystalline solid that is volatile and can catch fire. The molecule consists of a phenyl group () ...
s and other similar compounds contain oxygen. However, in thiols, selenols and tellurols; sulfur, selenium, and tellurium replace oxygen. Thiols are better known than selenols or tellurols. Aside from alcohols, thiols are the most stable chalcogenols and tellurols are the least stable, being unstable in heat or light. Other organic chalcogen compounds include thioethers, selenoethers and telluroethers. Some of these, such as dimethyl sulfide, diethyl sulfide, and dipropyl sulfide are commercially available. Selenoethers are in the form of R2Se or RSeR. Telluroethers such as dimethyl telluride are typically prepared in the same way as thioethers and selenoethers. Organic chalcogen compounds, especially organic sulfur compounds, have the tendency to smell unpleasant. Dimethyl telluride also smells unpleasant, and selenophenol is renowned for its "metaphysical stench". There are also thioketones, selenoketones, and telluroketones. Out of these, thioketones are the most well-studied with 80% of chalcogenoketones papers being about them. Selenoketones make up 16% of such papers and telluroketones make up 4% of them. Thioketones have well-studied non-linear electric and photophysical properties. Selenoketones are less stable than thioketones and telluroketones are less stable than selenoketones. Telluroketones have the highest level of polarity of chalcogenoketones.


With metals

There is a very large number of metal chalcogenides. There are also ternary compounds containing
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
s and
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
s. Highly metal-rich metal chalcogenides, such as Lu7Te and Lu8Te have domains of the metal's crystal lattice containing chalcogen atoms. While these compounds do exist, analogous chemicals that contain lanthanum, praseodymium, gadolinium, holmium,
terbium Terbium is a chemical element; it has Symbol (chemistry), symbol Tb and atomic number 65. It is a silvery-white, rare earth element, rare earth metal that is malleable and ductile. The ninth member of the lanthanide series, terbium is a fairly ele ...
, or ytterbium have not been discovered, as of 2008. The
boron group The boron group are the chemical elements in periodic table group, group 13 of the periodic table, consisting of boron (B), aluminium (Al), gallium (Ga), indium (In), thallium (Tl) and nihonium (Nh). This group lies in the p-block of the perio ...
metals aluminum,
gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
, and
indium Indium is a chemical element; it has Symbol (chemistry), symbol In and atomic number 49. It is a silvery-white post-transition metal and one of the softest elements. Chemically, indium is similar to gallium and thallium, and its properties are la ...
also form bonds to chalcogens. The Ti3+ ion forms chalcogenide dimers such as Ti Tl5Se8. Metal chalcogenide dimers also occur as lower tellurides, such as Zr5Te6. Elemental chalcogens react with certain lanthanide compounds to form lanthanide clusters rich in chalcogens.
Uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
(IV) chalcogenol compounds also exist. There are also
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
chalcogenols which have potential to serve as catalysts and stabilize
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s.


With pnictogens

Compounds with chalcogen-
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
bonds have been explored for more than 200 years. These compounds include unsophisticated phosphorus chalcogenides as well as large molecules with biological roles and phosphorus-chalcogen compounds with metal clusters. These compounds have numerous applications, including organo-phosphate insecticides, strike-anywhere matches and quantum dots. A total of 130,000 compounds with at least one phosphorus-sulfur bond, 6000 compounds with at least one phosphorus-selenium bond, and 350 compounds with at least one phosphorus-tellurium bond have been discovered. The decrease in the number of chalcogen-phosphorus compounds further down the periodic table is due to diminishing bond strength. Such compounds tend to have at least one phosphorus atom in the center, surrounded by four chalcogens and
side chain In organic chemistry and biochemistry, a side chain is a substituent, chemical group that is attached to a core part of the molecule called the "main chain" or backbone chain, backbone. The side chain is a hydrocarbon branching element of a mo ...
s. However, some phosphorus-chalcogen compounds also contain hydrogen (such as secondary
phosphine Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula , classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting ...
chalcogenides) or nitrogen (such as dichalcogenoimidodiphosphates). Phosphorus selenides are typically harder to handle that phosphorus sulfides, and compounds in the form PxTey have not been discovered. Chalcogens also bond with other
pnictogens , - ! colspan=2 style="text-align:left;" , ↓ Period (periodic table), Period , - ! Period 2 element, 2 , , - ! Period 3 element, 3 , , - ! Period 4 element, 4 , , - ! Period 5 element, 5 , , - ! Period 6 element, 6 , , - ! Perio ...
, such as
arsenic Arsenic is a chemical element; it has Symbol (chemistry), symbol As and atomic number 33. It is a metalloid and one of the pnictogens, and therefore shares many properties with its group 15 neighbors phosphorus and antimony. Arsenic is not ...
,
antimony Antimony is a chemical element; it has chemical symbol, symbol Sb () and atomic number 51. A lustrous grey metal or metalloid, it is found in nature mainly as the sulfide mineral stibnite (). Antimony compounds have been known since ancient t ...
, and bismuth. Heavier chalcogen pnictides tend to form ribbon-like polymers instead of individual molecules. Chemical formulas of these compounds include Bi2S3 and Sb2Se3. Ternary chalcogen pnictides are also known. Examples of these include P4O6Se and P3SbS3. salts containing chalcogens and pnictogens also exist. Almost all chalcogen pnictide salts are typically in the form of nxE4xsup>3−, where Pn is a pnictogen and E is a chalcogen. Tertiary phosphines can react with chalcogens to form compounds in the form of R3PE, where E is a chalcogen. When E is sulfur, these compounds are relatively stable, but they are less so when E is selenium or tellurium. Similarly, secondary phosphines can react with chalcogens to form secondary phosphine chalcogenides. However, these compounds are in a state of equilibrium with chalcogenophosphinous acid. Secondary phosphine chalcogenides are weak acids. Binary compounds consisting of antimony or arsenic and a chalcogen. These compounds tend to be colorful and can be created by a reaction of the constituent elements at temperatures of .


Other

Chalcogens form single bonds and double bonds with other
carbon group The carbon group is a group (periodic table), periodic table group consisting of carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), and flerovium (Fl). It lies within the p-block. In modern International Union of Pure and Applied Ch ...
elements than carbon, such as
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
,
germanium Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
, and tin. Such compounds typically form from a reaction of carbon group halides and chalcogenol salts or chalcogenol bases. Cyclic compounds with chalcogens, carbon group elements, and boron atoms exist, and occur from the reaction of boron dichalcogenates and carbon group metal halides. Compounds in the form of M-E, where M is silicon, germanium, or tin, and E is sulfur, selenium or tellurium have been discovered. These form when carbon group
hydride In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all che ...
s react or when heavier versions of carbenes react. Sulfur and tellurium can bond with organic compounds containing both silicon and phosphorus. All of the chalcogens form
hydride In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all che ...
s. In some cases this occurs with chalcogens bonding with two hydrogen atoms. However tellurium hydride and polonium hydride are both volatile and highly labile. Also, oxygen can bond to hydrogen in a 1:1 ratio as in
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
, but this compound is unstable. Chalcogen compounds form a number of interchalcogens. For instance, sulfur forms the toxic
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a colorless gas with a pungent smell that is responsible for the odor of burnt matches. It is r ...
and sulfur trioxide. Tellurium also forms oxides. There are some chalcogen sulfides as well. These include selenium sulfide, an ingredient in some shampoos. Since 1990, a number of borides with chalcogens bonded to them have been detected. The chalcogens in these compounds are mostly sulfur, although some do contain selenium instead. One such chalcogen boride consists of two molecules of dimethyl sulfide attached to a boron-hydrogen molecule. Other important boron-chalcogen compounds include macropolyhedral systems. Such compounds tend to feature sulfur as the chalcogen. There are also chalcogen borides with two, three, or four chalcogens. Many of these contain sulfur but some, such as Na2B2Se7 contain selenium instead.


History


Early discoveries

Sulfur has been known since ancient times and is mentioned in the
Bible The Bible is a collection of religious texts that are central to Christianity and Judaism, and esteemed in other Abrahamic religions such as Islam. The Bible is an anthology (a compilation of texts of a variety of forms) originally writt ...
fifteen times. It was known to the ancient Greeks and commonly mined by the
ancient Romans The Roman people was the ethnicity and the body of Roman citizenship, Roman citizens (; ) during the Roman Kingdom, the Roman Republic, and the Roman Empire. This concept underwent considerable changes throughout the long history of the Roman ...
. In the Middle Ages, it was a key part of alchemical experiments. In the 1700s and 1800s, scientists Joseph Louis Gay-Lussac and Louis-Jacques Thénard proved sulfur to be a chemical element. Early attempts to separate oxygen from air were hampered by the fact that air was thought of as a single element up to the 17th and 18th centuries. Robert Hooke, Mikhail Lomonosov, Ole Borch, and Pierre Bayden all successfully created oxygen, but did not realize it at the time. Oxygen was discovered by
Joseph Priestley Joseph Priestley (; 24 March 1733 – 6 February 1804) was an English chemist, Unitarian, Natural philosophy, natural philosopher, English Separatist, separatist theologian, Linguist, grammarian, multi-subject educator and Classical libera ...
in 1774 when he focused sunlight on a sample of mercuric oxide and collected the resulting gas.
Carl Wilhelm Scheele Carl Wilhelm Scheele (, ; 9 December 1742 – 21 May 1786) was a Swedish Pomerania, German-Swedish pharmaceutical chemist. Scheele discovered oxygen (although Joseph Priestley published his findings first), and identified the elements molybd ...
had also created oxygen in 1771 by the same method, but Scheele did not publish his results until 1777. Tellurium was first discovered in 1783 by Franz Joseph Müller von Reichenstein. He discovered tellurium in a sample of what is now known as calaverite. Müller assumed at first that the sample was pure antimony, but tests he ran on the sample did not agree with this. Muller then guessed that the sample was bismuth sulfide, but tests confirmed that the sample was not that. For some years, Muller pondered the problem. Eventually he realized that the sample was gold bonded with an unknown element. In 1796, Müller sent part of the sample to the German chemist Martin Klaproth, who purified the undiscovered element. Klaproth decided to call the element tellurium after the Latin word for earth. Selenium was discovered in 1817 by Jöns Jacob Berzelius. Berzelius noticed a reddish-brown sediment at a sulfuric acid manufacturing plant. The sample was thought to contain arsenic. Berzelius initially thought that the sediment contained tellurium, but came to realize that it also contained a new element, which he named selenium after the Greek moon goddess Selene.


Periodic table placing

Three of the chalcogens (sulfur, selenium, and tellurium) were part of the discovery of periodicity, as they are among a series of triads of elements in the same group that were noted by Johann Wolfgang Döbereiner as having similar properties. Around 1865 John Newlands produced a series of papers where he listed the elements in order of increasing atomic weight and similar physical and chemical properties that recurred at intervals of eight; he likened such periodicity to the
octave In music, an octave (: eighth) or perfect octave (sometimes called the diapason) is an interval between two notes, one having twice the frequency of vibration of the other. The octave relationship is a natural phenomenon that has been referr ...
s of music. His version included a "group b" consisting of oxygen, sulfur, selenium, tellurium, and osmium. After 1869,
Dmitri Mendeleev Dmitri Ivanovich Mendeleev ( ; ) was a Russian chemist known for formulating the periodic law and creating a version of the periodic table of elements. He used the periodic law not only to correct the then-accepted properties of some known ele ...
proposed his periodic table placing oxygen at the top of "group VI" above sulfur, selenium, and tellurium.
Chromium Chromium is a chemical element; it has Symbol (chemistry), symbol Cr and atomic number 24. It is the first element in Group 6 element, group 6. It is a steely-grey, Luster (mineralogy), lustrous, hard, and brittle transition metal. Chromium ...
,
molybdenum Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
,
tungsten Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...
, and
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
were sometimes included in this group, but they would be later rearranged as part of group VIB; uranium would later be moved to the
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
series. Oxygen, along with sulfur, selenium, tellurium, and later polonium would be grouped in ''group VIA'', until the group's name was changed to ''group 16'' in 1988.


Modern discoveries

In the late 19th century, Marie Curie and
Pierre Curie Pierre Curie ( ; ; 15 May 1859 – 19 April 1906) was a French physicist, Radiochemistry, radiochemist, and a pioneer in crystallography, magnetism, piezoelectricity, and radioactivity. He shared the 1903 Nobel Prize in Physics with his wife, ...
discovered that a sample of
pitchblende Uraninite, also known as pitchblende, is a radioactive, uranium-rich mineral and ore with a chemical composition that is largely UO2 but because of oxidation typically contains variable proportions of U3O8. Radioactive decay of the urani ...
was emitting four times as much radioactivity as could be explained by the presence of uranium alone. The Curies gathered several tons of pitchblende and refined it for several months until they had a pure sample of polonium. The discovery officially took place in 1898. Prior to the invention of particle accelerators, the only way to produce polonium was to extract it over several months from uranium ore. The first attempt at creating livermorium was from 1976 to 1977 at the LBNL, who bombarded curium-248 with calcium-48, but were not successful. After several failed attempts in 1977, 1998, and 1999 by research groups in Russia, Germany, and the US, livermorium was created successfully in 2000 at the Joint Institute for Nuclear Research by bombarding curium-248 atoms with calcium-48 atoms. The element was known as ununhexium until it was officially named livermorium in 2012.


Names and etymology

In the 19th century, Jons Jacob Berzelius suggested calling the elements in group 16 "amphigens", as the elements in the group formed amphid salts (salts of oxyacids, formerly regarded as composed of two oxides, an acid and a basic oxide). The term received some use in the early 1800s but is now obsolete. The name ''chalcogen'' comes from the Greek words ' (, literally "
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
"), and ' (, born, gender, kindle). It was first used in 1932 by Wilhelm Biltz's group at Leibniz University Hannover, where it was proposed by Werner Fischer. The word "chalcogen" gained popularity in Germany during the 1930s because the term was analogous to "halogen". Although the literal meanings of the modern Greek words imply that ''chalcogen'' means "copper-former", this is misleading because the chalcogens have nothing to do with copper in particular. "Ore-former" has been suggested as a better translation, as the vast majority of metal ores are chalcogenides and the word ' in ancient Greek was associated with metals and metal-bearing rock in general; copper, and its alloy
bronze Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals (such as phosphorus) or metalloid ...
, was one of the first metals to be used by humans. Oxygen's name comes from the Greek words ''oxy genes'', meaning "acid-forming". Sulfur's name comes from either the Latin word ' or the
Sanskrit Sanskrit (; stem form ; nominal singular , ,) is a classical language belonging to the Indo-Aryan languages, Indo-Aryan branch of the Indo-European languages. It arose in northwest South Asia after its predecessor languages had Trans-cultural ...
word '; both of those terms are ancient words for sulfur. Selenium is named after the Greek goddess of the moon,
Selene In ancient Greek mythology and Ancient Greek religion, religion, Selene (; , meaning "Moon")''A Greek–English Lexicon's.v. σελήνη is the goddess and personification of the Moon. Also known as Mene (), she is traditionally the daughter ...
, to match the previously discovered element tellurium, whose name comes from the Latin word ', meaning earth. Polonium is named after Marie Curie's country of birth, Poland. Livermorium is named for the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
.


Occurrence

The four lightest chalcogens (oxygen, sulfur, selenium, and tellurium) are all primordial elements on Earth. Sulfur and oxygen occur as constituent copper ores and selenium and tellurium occur in small traces in such ores. Polonium forms naturally from the decay of other elements, even though it is not primordial. Livermorium does not occur naturally at all. Oxygen makes up 21% of the atmosphere by weight, 89% of water by weight, 46% of the Earth's crust by weight, and 65% of the human body. Oxygen also occurs in many minerals, being found in all
oxide minerals The oxide mineral class includes those minerals in which the oxide anion (O2−) is bonded to one or more metal alloys. The hydroxide-bearing minerals are typically included in the oxide class. Minerals with complex anion groups such as the Sili ...
and hydroxide minerals, and in numerous other mineral groups. Stars of at least eight times the mass of the Sun also produce oxygen in their cores via
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
. Oxygen is the third-most abundant element in the universe, making up 1% of the universe by weight. Sulfur makes up 0.035% of the Earth's crust by weight, making it the 17th most abundant element there and makes up 0.25% of the human body. It is a major component of soil. Sulfur makes up 870 parts per million of seawater and about 1 part per billion of the atmosphere. Sulfur can be found in elemental form or in the form of sulfide minerals,
sulfate minerals The sulfate minerals are a class of minerals that include the sulfate ion () within their structure. The sulfate minerals occur commonly in primary evaporite depositional environments, as gangue minerals in hydrothermal veins and as secondary ...
, or
sulfosalt minerals Sulfosalt minerals are sulfide minerals with the general formula , where *A represents a metal such as copper, lead, silver, iron, and rarely mercury (element), mercury, zinc, vanadium *B usually represents semi-metal such as arsenic, antimony, b ...
. Stars of at least 12 times the mass of the Sun produce sulfur in their cores via nuclear fusion. Sulfur is the tenth most abundant element in the universe, making up 500 parts per million of the universe by weight. Selenium makes up 0.05
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe the small values of miscellaneous dimensionless quantity, dimensionless quantities, e.g. mole fraction or mass fraction (chemistry), mass fraction. Since t ...
of the Earth's crust by weight. This makes it the 67th most abundant element in the Earth's crust. Selenium makes up on average 5 parts per million of the soils.
Seawater Seawater, or sea water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has approximat ...
contains around 200 parts per trillion of selenium. The atmosphere contains 1
nanogram To help compare different ''Order of magnitude, orders of magnitude'', the following lists describe various ''mass'' levels between 10−67 kilogram, kg and 1052 kg. The least massive thing listed here is a graviton, and the most massive thi ...
of selenium per cubic meter. There are mineral groups known as selenates and selenites, but there are not many minerals in these groups. Selenium is not produced directly by nuclear fusion. Selenium makes up 30 parts per billion of the universe by weight. There are only 5 parts per billion of tellurium in the Earth's crust and 15 parts per billion of tellurium in seawater. Tellurium is one of the eight or nine least abundant elements in the Earth's crust. There are a few dozen tellurate minerals and telluride minerals, and tellurium occurs in some minerals with gold, such as sylvanite and calaverite. Tellurium makes up 9 parts per billion of the universe by weight. Polonium only occurs in trace amounts on Earth, via radioactive decay of uranium and thorium. It is present in uranium ores in concentrations of 100 micrograms per metric ton. Very minute amounts of polonium exist in the soil and thus in most food, and thus in the human body. The Earth's crust contains less than 1 part per billion of polonium, making it one of the ten rarest metals on Earth. Livermorium is always produced artificially in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s. Even when it is produced, only a small number of atoms are synthesized at a time.


Chalcophile elements

Chalcophile elements are those that remain on or close to the surface because they combine readily with chalcogens other than oxygen, forming compounds which do not sink into the core. Chalcophile ("chalcogen-loving") elements in this context are those metals and heavier nonmetals that have a low affinity for oxygen and prefer to bond with the heavier chalcogen sulfur as sulfides. Because sulfide minerals are much denser than the silicate minerals formed by lithophile elements, chalcophile elements separated below the lithophiles at the time of the first crystallisation of the Earth's crust. This has led to their depletion in the Earth's crust relative to their solar abundances, though this depletion has not reached the levels found with siderophile elements.


Production

Approximately 100 million metric tons of oxygen are produced yearly. Oxygen is most commonly produced by
fractional distillation Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation ...
, in which air is cooled to a liquid, then warmed, allowing all the components of air except for oxygen to turn to gases and escape. Fractionally distilling air several times can produce 99.5% pure oxygen. Another method with which oxygen is produced is to send a stream of dry, clean air through a bed of molecular sieves made of zeolite, which absorbs the nitrogen in the air, leaving 90 to 93% pure oxygen. Sulfur can be mined in its elemental form, although this method is no longer as popular as it used to be. In 1865 a large deposit of elemental sulfur was discovered in the U.S. states of Louisiana and Texas, but it was difficult to extract at the time. In the 1890s, Herman Frasch came up with the solution of liquefying the sulfur with superheated steam and pumping the sulfur up to the surface. These days sulfur is instead more often extracted from oil,
natural gas Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous hydrocarbons, primarily methane (95%), small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium ...
, and tar. The world production of selenium is around 1500 metric tons per year, out of which roughly 10% is recycled. Japan is the largest producer, producing 800 metric tons of selenium per year. Other large producers include Belgium (300 metric tons per year), the United States (over 200 metric tons per year), Sweden (130 metric tons per year), and Russia (100 metric tons per year). Selenium can be extracted from the waste from the process of electrolytically refining copper. Another method of producing selenium is to farm selenium-gathering plants such as milk vetch. This method could produce three kilograms of selenium per acre, but is not commonly practiced. Tellurium is mostly produced as a by-product of the processing of copper. Tellurium can also be refined by electrolytic reduction of sodium telluride. The world production of tellurium is between 150 and 200 metric tons per year. The United States is one of the largest producers of tellurium, producing around 50 metric tons per year. Peru, Japan, and Canada are also large producers of tellurium. Until the creation of nuclear reactors, all polonium had to be extracted from uranium ore. In modern times, most isotopes of polonium are produced by bombarding bismuth with neutrons. Polonium can also be produced by high neutron fluxes in nuclear reactors. Approximately 100 grams of polonium are produced yearly. All the polonium produced for commercial purposes is made in the Ozersk nuclear reactor in Russia. From there, it is taken to Samara, Russia for purification, and from there to St. Petersburg for distribution. The United States is the largest consumer of polonium. All livermorium is produced artificially in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s. The first successful production of livermorium was achieved by bombarding curium-248 atoms with calcium-48 atoms. As of 2011, roughly 25 atoms of livermorium had been synthesized.


Applications

Metabolism Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...
is the most important source and use of oxygen. Minor industrial uses include Steelmaking (55% of all purified oxygen produced), the chemical industry (25% of all purified oxygen), medical use,
water treatment Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, ...
(as oxygen kills some types of bacteria), rocket fuel (in liquid form), and metal cutting. Most sulfur produced is transformed into
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a colorless gas with a pungent smell that is responsible for the odor of burnt matches. It is r ...
, which is further transformed into
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
, a very common industrial chemical. Other common uses include being a key ingredient of
gunpowder Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, charcoal (which is mostly carbon), and potassium nitrate, potassium ni ...
and Greek fire, and being used to change soil pH. Sulfur is also mixed into rubber to vulcanize it. Sulfur is used in some types of
concrete Concrete is a composite material composed of aggregate bound together with a fluid cement that cures to a solid over time. It is the second-most-used substance (after water), the most–widely used building material, and the most-manufactur ...
and
fireworks Fireworks are Explosive, low explosive Pyrotechnics, pyrotechnic devices used for aesthetic and entertainment purposes. They are most commonly used in fireworks displays (also called a fireworks show or pyrotechnics), combining a large numbe ...
. 60% of all sulfuric acid produced is used to generate
phosphoric acid Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula . It is commonly encountered as an 85% aqueous solution, ...
. Sulfur is used as a
pesticide Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others (see table). The most common of these are herbicides, which account for approximately 50% of all p ...
(specifically as an acaricide and
fungicide Fungicides are pesticides used to kill parasitic fungi or their spores. Fungi can cause serious damage in agriculture, resulting in losses of yield and quality. Fungicides are used both in agriculture and to fight fungal infections in animals, ...
) on "orchard, ornamental, vegetable, grain, and other crops." Around 40% of all selenium produced goes to glassmaking. 30% of all selenium produced goes to
metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the ...
, including manganese production. 15% of all selenium produced goes to
agriculture Agriculture encompasses crop and livestock production, aquaculture, and forestry for food and non-food products. Agriculture was a key factor in the rise of sedentary human civilization, whereby farming of domesticated species created ...
. Electronics such as photovoltaic materials claim 10% of all selenium produced.
Pigment A pigment is a powder used to add or alter color or change visual appearance. Pigments are completely or nearly solubility, insoluble and reactivity (chemistry), chemically unreactive in water or another medium; in contrast, dyes are colored sub ...
s account for 5% of all selenium produced. Historically, machines such as
photocopier A photocopier (also called copier or copy machine, and formerly Xerox machine, the generic trademark) is a machine that makes copies of documents and other visual images onto paper or plastic film quickly and cheaply. Most modern photocopiers ...
s and
light meter A light meter (or illuminometer) is a device used to measure the amount of light. In photography, an exposure meter is a light meter coupled to either a Digital data, digital or analog calculator which displays the correct shutter speed and f-nu ...
s used one-third of all selenium produced, but this application is in steady decline. Tellurium suboxide, a mixture of tellurium and tellurium dioxide, is used in the rewritable data layer of some CD-RW disks and DVD-RW disks. Bismuth telluride is also used in many microelectronic devices, such as photoreceptors. Tellurium is sometimes used as an alternative to sulfur in vulcanized rubber. Cadmium telluride is used as a high-efficiency material in solar panels. Some of polonium's applications relate to the element's radioactivity. For instance, polonium is used as an alpha-particle generator for research. Polonium alloyed with
beryllium Beryllium is a chemical element; it has Symbol (chemistry), symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with ...
provides an efficient neutron source. Polonium is also used in nuclear batteries. Most polonium is used in antistatic devices. Livermorium does not have any uses whatsoever due to its extreme rarity and short half-life. Organochalcogen compounds are involved in the
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
process. These compounds also feature into
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
chemistry and
biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
. One application of chalcogens themselves is to manipulate
redox Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
couples in supramolecular chemistry (chemistry involving non-covalent bond interactions). This application leads on to such applications as crystal packing, assembly of large molecules, and biological recognition of patterns. The secondary bonding interactions of the larger chalcogens, selenium and tellurium, can create organic solvent-holding
acetylene Acetylene (Chemical nomenclature, systematic name: ethyne) is a chemical compound with the formula and structure . It is a hydrocarbon and the simplest alkyne. This colorless gas is widely used as a fuel and a chemical building block. It is u ...
nanotubes. Chalcogen interactions are useful for conformational analysis and stereoelectronic effects, among other things. Chalcogenides with through bonds also have applications. For instance,
divalent In chemistry, the valence (US spelling) or valency (British spelling) of an atom is a measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Valence is generally understood to be the number of chemica ...
sulfur can stabilize carbanions,
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
ic centers, and radical. Chalcogens can confer upon ligands (such as DCTO) properties such as being able to transform Cu(II) to Cu(I). Studying chalcogen interactions gives access to radical cations, which are used in mainstream synthetic chemistry. Metallic redox centers of biological importance are tunable by interactions of ligands containing chalcogens, such as
methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other non-essential amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine play ...
and selenocysteine. Also, chalcogen through-bonds can provide insight about the process of electron transfer.


Biological role

Oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
is needed by almost all
organisms An organism is any living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have been pr ...
for the purpose of generating ATP. It is also a key component of most other biological compounds, such as water,
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s and
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
. Human blood contains a large amount of oxygen. Human bones contain 28% oxygen. Human tissue contains 16% oxygen. A typical 70-kilogram human contains 43 kilograms of oxygen, mostly in the form of water. All animals need significant amounts of
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
. Some amino acids, such as
cysteine Cysteine (; symbol Cys or C) is a semiessential proteinogenic amino acid with the chemical formula, formula . The thiol side chain in cysteine enables the formation of Disulfide, disulfide bonds, and often participates in enzymatic reactions as ...
and
methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other non-essential amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine play ...
contain sulfur. Plant roots take up sulfate ions from the soil and reduce it to sulfide ions. Metalloproteins also use sulfur to attach to useful metal atoms in the body and sulfur similarly attaches itself to poisonous metal atoms like
cadmium Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
to haul them to the safety of the liver. On average, humans consume 900 milligrams of sulfur each day. Sulfur compounds, such as those found in skunk spray often have strong odors. All animals and some plants need trace amounts of
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
, but only for some specialized enzymes. Humans consume on average between 6 and 200 micrograms of selenium per day. Mushrooms and brazil nuts are especially noted for their high selenium content. Selenium in foods is most commonly found in the form of amino acids such as selenocysteine and selenomethionine. Selenium can protect against heavy metal poisoning. Tellurium is not known to be needed for animal life, although a few fungi can incorporate it in compounds in place of selenium. Microorganisms also absorb tellurium and emit dimethyl telluride. Most tellurium in the blood stream is excreted slowly in urine, but some is converted to dimethyl telluride and released through the lungs. On average, humans ingest about 600 micrograms of tellurium daily. Plants can take up some tellurium from the soil. Onions and garlic have been found to contain as much as 300
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe the small values of miscellaneous dimensionless quantity, dimensionless quantities, e.g. mole fraction or mass fraction (chemistry), mass fraction. Since t ...
of tellurium in dry weight. Polonium has no biological role, and is highly toxic on account of being radioactive.


Toxicity

Oxygen is generally nontoxic, but oxygen toxicity has been reported when it is used in high concentrations. In both elemental gaseous form and as a component of water, it is vital to almost all life on Earth. Despite this, liquid oxygen is highly dangerous. Even gaseous oxygen is dangerous in excess. For instance, sports divers have occasionally drowned from convulsions caused by breathing pure oxygen at a depth of more than underwater. Oxygen is also toxic to some
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
. Ozone, an allotrope of oxygen, is toxic to most life. It can cause lesions in the respiratory tract. Sulfur is generally nontoxic and is even a vital nutrient for humans. However, in its elemental form it can cause redness in the eyes and skin, a burning sensation and a cough if inhaled, a burning sensation and diarrhoea and/or
catharsis Catharsis is from the Ancient Greek word , , meaning "purification" or "cleansing", commonly used to refer to the purification and purgation of thoughts and emotions by way of expressing them. The desired result is an emotional state of renewal an ...
if ingested, and can irritate the mucous membranes. An excess of sulfur can be toxic for cows because microbes in the
rumen The rumen, also known as a paunch, is the largest stomach compartment in ruminants. The rumen and the reticulum make up the reticulorumen in ruminant animals. The diverse microbial communities in the rumen allows it to serve as the primary si ...
s of cows produce toxic hydrogen sulfide upon reaction with sulfur. Many sulfur compounds, such as
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is toxic, corrosive, and flammable. Trace amounts in ambient atmosphere have a characteristic foul odor of rotten eggs. Swedish chemist ...
(H2S) and
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a colorless gas with a pungent smell that is responsible for the odor of burnt matches. It is r ...
(SO2) are highly toxic. Selenium is a trace nutrient required by humans on the order of tens or hundreds of micrograms per day. A dose of over 450 micrograms can be toxic, resulting in bad breath and
body odor Body odor or body odour (BO) is present in all animals and its intensity can be influenced by many factors (behavioral patterns, survival strategies). Body odor has a strong genetic basis, but can also be strongly influenced by various factors, ...
. Extended, low-level exposure, which can occur at some industries, results in
weight loss Weight loss, in the context of medicine, health, or physical fitness, refers to a reduction of the total body mass, by a mean loss of fluid, body fat (adipose tissue), or lean mass (namely bone mineral deposits, muscle, tendon, and other conn ...
,
anemia Anemia (also spelt anaemia in British English) is a blood disorder in which the blood has a reduced ability to carry oxygen. This can be due to a lower than normal number of red blood cells, a reduction in the amount of hemoglobin availabl ...
, and
dermatitis Dermatitis is a term used for different types of skin inflammation, typically characterized by itchiness, redness and a rash. In cases of short duration, there may be small blisters, while in long-term cases the skin may become thickened ...
. In many cases of selenium poisoning, selenous acid is formed in the body. Hydrogen selenide (H2Se) is highly toxic. Exposure to tellurium can produce unpleasant side effects. As little as 10 micrograms of tellurium per cubic meter of air can cause notoriously unpleasant breath, described as smelling like rotten garlic. Acute tellurium poisoning can cause vomiting, gut inflammation, internal bleeding, and respiratory failure. Extended, low-level exposure to tellurium causes tiredness and indigestion. Sodium tellurite (Na2TeO3) is lethal in amounts of around 2 grams. Polonium is dangerous as an
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
emitter. If ingested, polonium-210 is a million times as toxic as hydrogen cyanide by weight; it has been used as a murder weapon in the past, most famously Death of Alexander Litvinenko, to kill Alexander Litvinenko. Polonium poisoning can cause nausea, vomiting, anorexia (symptom), anorexia, and lymphopenia. It can also damage hair follicles and white blood cells. Polonium-210 is only dangerous if ingested or inhaled because its alpha particle emissions cannot penetrate human skin. Polonium-209 is also toxic, and can cause leukemia.


Amphid salts

''Amphid salts'' was a name given by Jons Jacob Berzelius in the 19th century for chemical salts derived from the 16th group of the periodic table which included
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
,
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
,
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
, and tellurium. The term received some use in the early 1800s but is now obsolete. The current term in use for the 16th group is chalcogens.


See also

* Chalcogenide * Gold chalcogenides * Halogen * Interchalcogen * Pnictogen


References


External links

* {{Authority control Chalcogens, Periodic table Groups (periodic table)