HOME

TheInfoList



OR:

Bioaerosols (short for biological aerosols) are a subcategory of particles released from terrestrial and marine ecosystems into the atmosphere. They consist of both living and non-living components, such as fungi, pollen, bacteria and viruses. Common sources of bioaerosols include soil, water, and sewage. Bioaerosols are typically introduced into the air via wind turbulence over a surface. Once in the atmosphere, they can be transported locally or globally: common wind patterns/strengths are responsible for local dispersal, while tropical storms and dust plumes can move bioaerosols between continents. Over ocean surfaces, bioaerosols are generated via sea spray and bubbles Bioaerosols can transmit microbial
pathogens In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a ger ...
, endotoxins, and allergens to which humans are sensitive. A well-known case was the meningococcal meningitis outbreak in sub-Saharan Africa, which was linked to dust storms during dry seasons. Other outbreaks linked to dust events including ''Mycoplasma'' pneumonia and
tuberculosis Tuberculosis (TB) is an infectious disease usually caused by '' Mycobacterium tuberculosis'' (MTB) bacteria. Tuberculosis generally affects the lungs, but it can also affect other parts of the body. Most infections show no symptoms, i ...
. Another instance was an increase in human respiratory problems in the Caribbean that may have been caused by traces of heavy metals, microorganism bioaerosols, and pesticides transported via dust clouds passing over the Atlantic Ocean.


Background

Charles Darwin Charles Robert Darwin ( ; 12 February 1809 – 19 April 1882) was an English naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all species of life have descended ...
was the first to observe the transport of dust particles but Louis Pasteur was the first to research microbes and their activity within the air. Prior to Pasteur’s work, laboratory cultures were used to grow and isolate different bioaerosols. Since not all microbes can be cultured, many were undetected before the development of DNA-based tools. Pasteur also developed experimental procedures for sampling bioaerosols and showed that more microbial activity occurred at lower altitudes and decreased at higher altitudes.


Types of bioaerosols

Bioaerosols include
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
,
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
,
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es, and pollen. Their concentrations are greatest in the
planetary boundary layer In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. On Ear ...
(PBL) and decrease with altitude. Survival rate of bioaerosols depends on a number of biotic and abiotic factors which include climatic conditions, ultraviolet (UV) light, temperature and humidity, as well as resources present within dust or clouds. Bioaerosols found over marine environments primarily consist of bacteria, while those found over terrestrial environments are rich in bacteria, fungi and pollen. The dominance of particular bacteria and their nutrient sources are subject to change according to time and location. Bioaerosols can range in size from 10 nanometer virus particles to 100 micrometers pollen grains. Pollen grains are the largest bioaerosols and are less likely to remain suspended in the air over a long period of time due to their weight. Consequently, pollen particle concentration decreases more rapidly with height than smaller bioaerosols such as bacteria, fungi and possibly viruses, which may be able to survive in the upper troposphere. At present, there is little research on the specific altitude tolerance of different bioaerosols. However, scientists believe that atmospheric turbulence impacts where different bioaerosols may be found.


Fungi

Fungal cells usually die when they travel through the atmosphere due to the desiccating effects of higher altitudes. However, some particularly resilient fungal bioaerosols have been shown to survive in atmospheric transport despite exposure to severe UV light conditions. Although bioaerosol levels of fungal spores increase in higher humidity conditions, they can also can be active in low humidity conditions and in most temperature ranges. Certain fungal bioaerosols even increase at relatively low levels of humidity.


Bacteria

Unlike other bioaerosols, bacteria are able to complete full reproductive cycles within the days or weeks that they survive in the atmosphere, making them a major component of the air biota ecosystem. These reproductive cycles support a currently unproven theory that bacteria bioaerosols form communities in an atmospheric ecosystem. The survival of bacteria depends on water droplets from fog and clouds that provide bacteria with nutrients and protection from UV light. The four known bacterial groupings that are abundant in aeromicrobial environments around the world include
Bacillota The Bacillota (synonym Firmicutes) are a phylum of bacteria, most of which have gram-positive cell wall structure. The renaming of phyla such as Firmicutes in 2021 remains controversial among microbiologists, many of whom continue to use the earl ...
,
Actinomycetota The ''Actinomycetota'' (or ''Actinobacteria'') are a phylum of all gram-positive bacteria. They can be terrestrial or aquatic. They are of great economic importance to humans because agriculture and forests depend on their contributions to s ...
, Pseudomonadota, and Bacteroidota.


Viruses

The air transports viruses and other
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
s. Since viruses are smaller than other bioaerosols, they have the potential to travel further distances. In one simulation, a virus and a fungal spore were simultaneously released from the top of a building; the spore traveled only 150 meters while the virus traveled almost 200,000 horizontal kilometers. In one study, aerosols (<5 μm) containing SARS-CoV-1 and
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the ongoing COVID-19 pandemic. The virus previously had a ...
were generated by an atomizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum yielded cycle thresholds between 20 and 22, similar to those observed in human upper and lower respiratory tract samples. SARS-CoV-2 remained viable in aerosols for 3 hours, with a decrease in infection titre similar to SARS-CoV-1. The
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of both viruses in aerosols was 1.1 to 1.2 hours on average. The results suggest that the transmission of both viruses by aerosols is plausible, as they can remain viable and infectious in suspended aerosols for hours and on surfaces for up to days.


Pollen

Despite being larger and heavier than other bioaerosols, some studies show that pollen can be transported thousands of kilometers. They are a major source of wind-dispersed allergens, coming particularly from seasonal releases from grasses and trees. Tracking distance, transport, resources, and deposition of pollen to terrestrial and marine environments are useful for interpreting pollen records.


Collection

The main tools used to collect bioaerosols are collection plates,
electrostatic Electrostatics is a branch of physics that studies electric charges at rest ( static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amb ...
collectors,
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
s, and impactors, other methods are used but are more experimental in nature. Polycarbonate (PC) filters have had the most accurate bacterial sampling success when compared to other PC filter options.


Single-stage impactors

To collect bioaerosols falling within a specific size range, impactors can be stacked to capture the variation of particulate matter (PM). For example, a PM10 filter lets smaller sizes pass through. This is similar to the size of a human hair.
Particulates Particulates – also known as atmospheric aerosol particles, atmospheric particulate matter, particulate matter (PM) or suspended particulate matter (SPM) – are microscopic particles of solid or liquid matter suspended in the air. The t ...
are deposited onto the slides, agar plates, or tape at the base of the impactor. The ''Hirst spore trap'' samples at 10 liters/minute (LPM) and has a wind vane to always sample in the direction of wind flow. Collected particles are impacted onto a vertical glass slide greased with petroleum. Variations such as the ''7-day recording volumetric spore trap'' have been designed for continuous sampling using a slowly rotating drum that deposits impacted material onto a coated plastic tape. The ''airborne bacteria sampler'' can sample at rates up to 700 LPM, allowing for large samples to be collected in a short sampling time. Biological material is impacted and deposited onto an agar lined Petri dish, allowing cultures to develop.


Cascade impactors

Similar to single-stage impactors in collection methods,
cascade impactor A cascade impactor measures the reach range of a particulate substance as it moves through an opening with the use of aerosol. Cascade impactors are strictly measurement-related devices. In addition to measuring the range of substances moved thr ...
s have multiple size cuts (PM10, PM2.5), allowing for bioaerosols to separate according to size. Separating biological material by
aerodynamic diameter An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropo ...
is useful due to size ranges being dominated by specific types of organisms (bacteria exist range from 1–20 micrometers and pollen from 10–100 micrometers). The ''Andersen'' line of cascade impactors are most widely used to test air particles.


Cyclones

A cyclone sampler consists of a circular chamber with the aerosol stream entering through one or more tangential nozzles. Like an impactor, a cyclone sampler depends upon the inertia of the particle to cause it to deposit on the sampler wall as the air stream curves around inside the chamber. Also like an impactor, the collection efficiency depends upon the flow rate. Cyclones are less prone to particle bounce than impactors and can collect larger quantities of material. They also may provide a more gentle collection than impactors, which can improve the recovery of viable microorganisms. However, cyclones tend to have collection efficiency curves that are less sharp than impactors, and it is simpler to design a compact cascade impactor compared to a cascade of cyclone samplers.


Impingers

Instead of collecting onto a greased substrate or agar plate, impingers have been developed to impact bioaerosols into liquids, such as deionized water or phosphate buffer solution. Collection efficiencies of impingers are shown by Ehrlich et al. (1966) to be generally higher than similar single stage impactor designs. Commercially available impingers include the AGI-30 (Ace Glass Inc.) and Biosampler (SKC, Inc).


Electrostatic precipitators

Electrostatic precipitators, ESPs, have recently gained renewed interest for bioaerosol sampling due to their highly efficient particle removal efficiencies and gentler sampling method as compared with impinging. ESPs charge and remove incoming aerosol particles from an air stream by employing a non-uniform electrostatic field between two electrodes, and a high field strength. This creates a region of high density ions, a corona discharge, which charges incoming aerosol droplets, and the electric field deposits the charges particles onto a collection surface. Since biological particles are typically analysed using liquid-based assays ( PCR,
immunoassay An immunoassay (IA) is a biochemical test that measures the presence or concentration of a macromolecule or a small molecule in a solution through the use of an antibody (usually) or an antigen (sometimes). The molecule detected by the immunoass ...
s,
viability assay A viability assay is an assay that is created to determine the ability of organs, cells or tissues to maintain or recover a state of survival. Viability can be distinguished from the all-or-nothing states of life and death by the use of a quanti ...
) it is preferable to sample directly into a liquid volume for downstream analysis. For example, Pardon et al. show sampling of aerosols down to a
microfluidic Microfluidics refers to the behavior, precise control, and manipulation of fluids that are geometrically constrained to a small scale (typically sub-millimeter) at which surface forces dominate volumetric forces. It is a multidisciplinary field tha ...
air-liquid interface, and Ladhani et al., show sampling of airborne Influenza down to a small liquid droplet. The use of low-volume liquids is ideal for minimising sample dilution, and has the potential to be couple to lab-on-chip technologies for rapid
point-of-care Clinical point of care (POC) is the point in time when clinicians deliver healthcare products and services to patients at the time of care. Clinical documentation Clinical documentation is a record of the critical thinking and judgment of a heal ...
analysis.


Filters

Filters are often used to collect bioaerosols because of their simplicity and low cost. Filter collection is especially useful for personal bioaerosol sampling since they are light and unobtrusive. Filters can be preceded by a size-selective inlet, such as a cyclone or impactor, to remove larger particles and provide size-classification of the bioaerosol particles. Aerosol filters are often described using the term "pore size" or "equivalent pore diameter". Note that the filter pore size does NOT indicate the minimum particle size that will be collected by the filter; in fact, aerosol filters generally will collect particles much smaller than the nominal pore size.


Transport mechanisms


Ejection of bioaerosols into the atmosphere

Bioaerosols are typically introduced into the air via wind turbulence over a surface. Once airborne they typically remain in the planetary boundary layer (PBL), but in some cases reach the upper troposphere and stratosphere. Once in the atmosphere, they can be transported locally or globally: common wind patterns/strengths are responsible for local dispersal, while tropical storms and dust plumes can move bioaerosols between continents. Over ocean surfaces, bioaerosols are generated via sea spray and bubbles.


Small scale transport via clouds

Knowledge of bioaerosols has shaped our understanding of microorganisms and the differentiation between microbes, including airborne pathogens. In the 1970s, a breakthrough occurred in atmospheric physics and microbiology when ice nucleating bacteria were identified. The highest concentration of bioaerosols is near the Earth’s surface in the PBL. Here wind turbulence causes vertical mixing, bringing particles from the ground into the atmosphere. Bioaerosols introduced to the atmosphere can form clouds, which are then blown to other geographic locations and precipitate out as rain, hail, or snow. Increased levels of bioaerosols have been observed in rain forests during and after rain events. Bacteria and phytoplankton from marine environments have been linked to cloud formation. However, for this same reason, bioaerosols cannot be transported long distances in the PBL since the clouds will eventually precipitate them out. Furthermore, it would take additional turbulence or convection at the upper limits of the PBL to inject bioaerosols into the troposphere where they may transported larger distances as part of tropospheric flow. This limits the concentration of bioaerosols at these altitudes. Cloud droplets, ice crystals, and precipitation use bioaerosols as a nucleus where water or crystals can form or hold onto their surface. These interactions show that air particles can change the hydrological cycle, weather conditions, and weathering around the world. Those changes can lead to effects such as desertification which is magnified by climate shifts. Bioaerosols also intermix when pristine air and smog meet, changing visibility and/or air quality.


Large scale transport via dust plumes

Satellite images show that storms over Australian, African, and Asian deserts create dust plumes which can carry dust to altitudes of over 5 kilometers above the Earth's surface. This mechanism transports the material thousands of kilometers away, even moving it between continents. Multiple studies have supported the theory that bioaerosols can be carried along with dust. One study concluded that a type of airborne bacteria present in a particular desert dust was found at a site 1,000 kilometers downwind. Possible global scale highways for bioaerosols in dust include: * Storms over Northern Africa picking up dust, which can then be blown across the Atlantic to the Americas, or north to Europe. For transatlantic transport, there is a seasonal shift in the destination of the dust: North America during the summer, and South America during the winter. * Dust from the Gobi and Taklamakan deserts is transported to North America, mainly during the Northern Hemisphere spring. * Dust from Australia is carried out into the Pacific Ocean, with the possibility of being deposited in New Zealand.


Community dispersal

Bioaerosol transport and distribution is not consistent around the globe. While bioaerosols may travel thousands of kilometers before deposition, their ultimate distance of travel and direction is dependent on meteorological, physical, and chemical factors. One study generated an airborne bacteria/fungi map of the United States from observational measurements, resulting community profiles of these bioaerosols were connected to soil pH, mean annual precipitation, net primary productivity, and mean annual temperature, among other factors.


Biogeochemical impacts

Bioaerosols impact a variety of
biogeochemical Biogeochemistry is the scientific discipline that involves the study of the chemical, physical, geological, and biological processes and reactions that govern the composition of the natural environment (including the biosphere, the cryosphere, th ...
systems on earth including, but not limited to atmospheric, terrestrial, and marine ecosystems. As long-standing as these relationships are, the topic of bioaerosols is not very well-known. Bioaerosols can affect organisms in a multitude of ways including influencing the health of living organisms through allergies, disorders, and disease. Additionally, the distribution of pollen and spore bioaerosols contribute to the genetic diversity of organisms across multiple habitats.


Cloud formation

A variety of bioaerosols may contribute to cloud condensation nuclei or cloud
ice nuclei An ice nucleus, also known as an ice nucleating particle (INP), is a particle which acts as the nucleus for the formation of an ice crystal in the atmosphere. Ice Nucleation Mechanisms There are a number of mechanisms of ice nucleation in the atmo ...
, possible bioaerosol components are living or dead cells, cell fragments, hyphae, pollen, or spores. Cloud formation and precipitation are key features of many hydrologic cycles to which ecosystems are tied. In addition, global cloud cover is a significant factor in the overall radiation budget and therefore, temperature of the Earth. Bioaerosols make up a small fraction of the total cloud condensation nuclei in the atmosphere (between 0.001% and 0.01%) so their global impact (i.e. radiation budget) is questionable. However, there are specific cases where bioaerosols may form a significant fraction of the clouds in an area. These include: * Areas where there is cloud formation at temperatures over -15 °C since some bacteria have developed proteins which allow them to nucleate ice at higher temperatures. * Areas over vegetated regions or under remote conditions where the air is less impacted by anthropogenic activity. * Near surface air in remote marine regions like the Southern Ocean where sea spray may be more prevalent than dust transported from continents. The collection of bioaerosol particles on a surface is called deposition. The removal of these particles from the atmosphere affects human health in regards to air quality and respiratory systems.


Alpine lakes in Spain

Alpine lakes located in the Central Pyrenees region of northeast Spain are unaffected by anthropogenic factors making these oligotrophic lakes ideal indicators for sediment input and environmental change. Dissolved organic matter and nutrients from dust transport can aid bacteria with growth and production in low nutrient waters. Within the collected samples of one study, a high diversity of airborne microorganisms were detected and had strong similarities to Mauritian soils despite Saharan dust storms occurring at the time of detection.


Affected ocean species

The types and sizes of bioaerosols vary in marine environments and occur largely because of wet-discharges caused by changes in osmotic pressure or surface tension. Some types of marine originated bioaerosols excrete dry-discharges of fungal spores that are transported by the wind. One instance of impact on marine species was the 1983 die off of Caribbean sea fans and sea urchins that correlated with dust storms originating in Africa. This correlation was determined by the work of microbiologists and a
Total Ozone Mapping Spectrometer The Total Ozone Mapping Spectrometer (TOMS) was a NASA satellite instrument, specifically a spectrometer, for measuring the ozone layer. Of the five TOMS instruments which were built, four entered successful orbit. The satellites carrying TOMS ins ...
, which identified bacteria, viral, and fungal bioaerosols in the dust clouds that were tracked over the Atlantic Ocean. Another instance in of this occurred in 1997 when El Niño possibly impacted seasonal tradewind patterns from Africa to Barbados, resulting in similar die offs. Modeling instances like these can contribute to more accurate predictions future events.


Spread of diseases

The aerosolization of bacteria in dust contributes heavily to the transport of bacterial pathogens. A well-known case of disease outbreak by bioaerosol was the meningococcal meningitis outbreak in sub-Saharan Africa, which was linked to dust storms during dry seasons. Other outbreaks have been reportedly linked to dust events including ''Mycoplasma'' pneumonia and
tuberculosis Tuberculosis (TB) is an infectious disease usually caused by '' Mycobacterium tuberculosis'' (MTB) bacteria. Tuberculosis generally affects the lungs, but it can also affect other parts of the body. Most infections show no symptoms, i ...
. Another instance of bioaerosol-spread health issues was an increase in human respiratory problems for Caribbean-region residents that may have been caused by traces of heavy metals, microorganism bioaerosols, and pesticides transported via dust clouds passing over the Atlantic Ocean. Common sources of bioaerosols include soil, water, and sewage. Bioaerosols can transmit microbial
pathogens In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a ger ...
, endotoxins, and allergens and can excrete both endotoxins and exotoxins. Exotoxins can be particularly dangerous when transported through the air and distribute pathogens to which humans are sensitive. Cyanobacteria are particularly prolific in their pathogen distribution and are abundant in both terrestrial and aquatic environments.


Future research

The potential role of bioaerosols in climate change offers an abundance of research opportunities. Specific areas of study include monitoring bioaerosol impacts on different ecosystems and using meteorological data to forecast ecosystem changes. Determining global interactions is possible through methods like collecting air samples,
DNA extraction The first isolation of deoxyribonucleic acid (DNA) was done in 1869 by Friedrich Miescher. Currently, it is a routine procedure in molecular biology or forensic analyses. For the chemical method, many different kits are used for extraction, and s ...
from bioaerosols, and PCR amplification. Developing more efficient modelling systems will reduce the spread of human disease and benefit economic and ecologic factors. An atmospheric modeling tool called the Atmospheric Dispersion Modelling System ( ADMS 3) is currently in use for this purpose. The ADMS 3 uses
computational fluid dynamics Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate ...
(CFD) to locate potential problem areas, minimizing the spread of harmful bioaerosol pathogens include tracking occurrences.
Agroecosystem Agroecosystems are the ecosystems supporting the food production systems in our farms and gardens. As the name implies, at the core of an agroecosystem lies the human activity of agriculture. As such they are the basic unit of study in Agroecology ...
s have an array of potential future research avenues within bioaerosols. Identification of deteriorated soils may identify sources of plant or animal pathogens.


See also

*
Mycotoxin A mycotoxin (from the Greek μύκης , "fungus" and τοξίνη , "toxin") is a toxic secondary metabolite produced by organisms of kingdom Fungi and is capable of causing disease and death in both humans and other animals. The term 'mycotoxin' ...
*
Indoor air quality Indoor air quality (IAQ) is the air quality within and around buildings and structures. IAQ is known to affect the health, comfort, and well-being of building occupants. Poor indoor air quality has been linked to sick building syndrome, reduce ...
* Indoor bioaerosol * Mold growth, assessment, and remediation * Mold health issues * Sick building syndrome


References


External links


Aeromicrobiology
''MicrobeWiki''
Bioaerosols and OSH
''OSHWIKI''


Sampling and characterization of bioaerosols
''NIOSH Manual of Analytical Methods'' * {{Skeptoid , id= 4494, number=494 , title= Black Mold: Peril or Prosaic?, date= November 24, 2015, quote= , access-date= Physical chemistry Aerosols Aerosol measurement