4-simplex T01
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the 5-cell is the convex
4-polytope In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: Vertex (geometry), vertices, Edge (geo ...
with
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
. It is a 5-vertex
four-dimensional Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called ''dimensions'' ...
object bounded by five tetrahedral cells. It is also known as a C5, hypertetrahedron, pentachoron, pentatope, pentahedroid, tetrahedral pyramid, or 4-
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
(Coxeter's \alpha_4 polytope), the simplest possible convex 4-polytope, and is analogous to the
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
in three dimensions and the
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
in two dimensions. The 5-cell is a 4-dimensional pyramid with a tetrahedral base and four tetrahedral sides. The regular 5-cell is bounded by five regular tetrahedra, and is one of the six
regular convex 4-polytope In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six co ...
s (the four-dimensional analogues of the
Platonic solids In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edge ...
). A regular 5-cell can be constructed from a regular tetrahedron by adding a fifth vertex one edge length distant from all the vertices of the tetrahedron. This cannot be done in 3-dimensional space. The regular 5-cell is a solution to the problem: ''Make 10 equilateral triangles, all of the same size, using 10 matchsticks, where each side of every triangle is exactly one matchstick, and none of the triangles and matchsticks intersect one another.'' No solution exists in three dimensions.


Properties

The 5-cell is the 4-dimensional
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
, the simplest possible
4-polytope In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: Vertex (geometry), vertices, Edge (geo ...
. In other words, the 5-cell is a polychoron analogous to a
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
in high dimension. It is formed by any five points which are not all in the same
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
(as a tetrahedron is formed by any four points which are not all in the same plane, and a
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
is formed by any three points which are not all in the same line). Any such five points constitute a 5-cell, though not usually a regular 5-cell. The ''regular'' 5-cell is not found within any of the other regular convex 4-polytopes except one: the 600-vertex
120-cell In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hec ...
is a compound of 120 regular 5-cells. The 5-cell is self-dual, meaning its dual polytope is 5-cell itself. Its maximal intersection with 3-dimensional space is the
triangular prism In geometry, a triangular prism or trigonal prism is a Prism (geometry), prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a ''right triangular prism''. A right triangul ...
. Its dichoral angle is \arccos(-1/4) \approx 75.52^\circ . It is the first in the sequence of 6 convex regular 4-polytopes, in order of volume at a given radius or number of vertexes. The convex hull of two 5-cells in dual configuration is the disphenoidal 30-cell, dual of the bitruncated 5-cell.


As a configuration

This configuration matrix represents the 5-cell. The rows and columns correspond to vertices, edges, faces, and cells. The diagonal numbers say how many of each element occur in the whole 5-cell. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual polytope's matrix is identical to its 180 degree rotation. The ''k''-faces can be read as rows left of the diagonal, while the ''k''-figures are read as rows after the diagonal. All these elements of the 5-cell are enumerated in
Branko Grünbaum Branko Grünbaum (; 2 October 1929 – 14 September 2018) was a Croatian-born mathematician of Jewish descentVenn diagram A Venn diagram is a widely used diagram style that shows the logical relation between set (mathematics), sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple ...
of 5 points, which is literally an illustration of the regular 5-cell in
projection Projection or projections may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphics, and carto ...
to the plane.


Geodesics and rotations

The 5-cell has only
digon In geometry, a bigon, digon, or a ''2''-gon, is a polygon with two sides (edge (geometry), edges) and two Vertex (geometry), vertices. Its construction is Degeneracy (mathematics), degenerate in a Euclidean plane because either the two sides wou ...
central planes through vertices. It has 10 digon central planes, where each vertex pair is an edge, not an axis, of the 5-cell. Each digon plane is orthogonal to 3 others, but completely orthogonal to none of them. The characteristic isoclinic rotation of the 5-cell has, as pairs of invariant planes, those 10 digon planes and their completely orthogonal central planes, which are 0-gon planes which intersect no vertices of the 5-cell. Below, a spinning 5-cell is visualized with the fourth dimension squashed and displayed as colour. The
Clifford torus In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles and (in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdon Cliffo ...
is depicted in its rectangular (wrapping) form. Visualization of 4D rotations"> File:Simple 4D rotation of a 5-cell, in X-Y plane.webm, loop, Simply rotating in X-Y plane File:Simple 4D rotation of a 5-cell, in Z-W plane.webm, loop, Simply rotating in Z-W plane File:Double 4D rotation of a 5-cell.webm, loop, Double rotating in X-Y and Z-W planes with angular velocities in a 4:3 ratio File:Isoclinic left 4D rotation of a 5-cell.webm, loop, Left isoclinic rotation File:Isoclinic right 4D rotation of a 5-cell.webm, loop, Right isoclinic rotation


Projections

The A4 Coxeter plane projects the 5-cell into a regular
pentagon In geometry, a pentagon () is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is 540°. A pentagon may be simple or list of self-intersecting polygons, self-intersecting. A self-intersecting ...
and
pentagram A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle around ...
. The A3 Coxeter plane projection of the 5-cell is that of a
square pyramid In geometry, a square pyramid is a Pyramid (geometry), pyramid with a square base and four triangles, having a total of five faces. If the Apex (geometry), apex of the pyramid is directly above the center of the square, it is a ''right square p ...
. The A2 Coxeter plane projection of the regular 5-cell is that of a
triangular bipyramid A triangular bipyramid is a hexahedron with six triangular faces constructed by attaching two tetrahedra face-to-face. The same shape is also known as a triangular dipyramid or trigonal bipyramid. If these tetrahedra are regular, all faces of a t ...
(two tetrahedra joined face-to-face) with the two opposite vertices centered.


Irregular 5-cells

In the case of simplexes such as the 5-cell, certain irregular forms are in some sense more fundamental than the regular form. Although regular 5-cells cannot fill 4-space or the regular 4-polytopes, there are irregular 5-cells which do. These characteristic 5-cells are the
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each ...
s of the different
symmetry groups In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
which give rise to the various 4-polytopes.


Orthoschemes

A 4-orthoscheme is a 5-cell where all 10 faces are right triangles. (The 5 vertices form 5 tetrahedral cells face-bonded to each other, with a total of 10 edges and 10 triangular faces.) An orthoscheme is an irregular
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
that is the
convex hull In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, ...
of a
tree In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, e.g., including only woody plants with secondary growth, only ...
in which all edges are mutually perpendicular. In a 4-dimensional orthoscheme, the tree consists of four perpendicular edges connecting all five vertices in a linear path that makes three right-angled turns. The elements of an orthoscheme are also orthoschemes (just as the elements of a regular simplex are also regular simplexes). Each tetrahedral cell of a 4-orthoscheme is a 3-orthoscheme, and each triangular face is a 2-orthoscheme (a right triangle). Orthoschemes are the characteristic simplexes of the regular polytopes, because each regular polytope is generated by reflections in the bounding facets of its particular characteristic orthoscheme. For example, the special case of the 4-orthoscheme with equal-length perpendicular edges is the characteristic orthoscheme of the 4-cube (also called the ''tesseract'' or ''8-cell''), the 4-dimensional analogue of the 3-dimensional cube. If the three perpendicular edges of the 4-orthoscheme are of unit length, then all its edges are of length , , , or , precisely the chord lengths of the unit 4-cube (the lengths of the 4-cube's edges and its various diagonals). Therefore this 4-orthoscheme fits within the 4-cube, and the 4-cube (like every regular convex polytope) can be dissected into instances of its characteristic orthoscheme. A 3-orthoscheme is easily illustrated, but a 4-orthoscheme is more difficult to visualize. A 4-orthoscheme is a tetrahedral pyramid with a 3-orthoscheme as its base. It has four more edges than the 3-orthoscheme, joining the four vertices of the base to its apex (the fifth vertex of the 5-cell). Pick out any one of the 3-orthoschemes of the six shown in the 3-cube illustration. Notice that it touches four of the cube's eight vertices, and those four vertices are linked by a 3-edge path that makes two right-angled turns. Imagine that this 3-orthoscheme is the base of a 4-orthoscheme, so that from each of those four vertices, an unseen 4-orthoscheme edge connects to a fifth apex vertex (which is outside the 3-cube and does not appear in the illustration at all). Although the four additional edges all reach the same apex vertex, they will all be of different lengths. The first of them, at one end of the 3-edge orthogonal path, extends that path with a fourth orthogonal edge by making a third 90 degree turn and reaching perpendicularly into the fourth dimension to the apex. The second of the four additional edges is a diagonal of a cube face (not of the illustrated 3-cube, but of another of the tesseract's eight 3-cubes). The third additional edge is a diagonal of a 3-cube (again, not the original illustrated 3-cube). The fourth additional edge (at the other end of the orthogonal path) is a long diameter of the tesseract itself, of length . It reaches through the exact center of the tesseract to the
antipodal Antipode or Antipodes may refer to: Mathematics * Antipodal point, the diametrically opposite point on a circle or ''n''-sphere, also known as an antipode * Antipode, the convolution inverse of the identity on a Hopf algebra Geography * Antipodes ...
vertex (a vertex of the opposing 3-cube), which is the apex. Thus the characteristic 5-cell of the 4-cube has four edges, three edges, two edges, and one edge. The 4-cube can be dissected into 24 such 4-orthoschemes eight different ways, with six 4-orthoschemes surrounding each of four orthogonal tesseract long diameters. The 4-cube can also be dissected into 384 ''smaller'' instances of this same characteristic 4-orthoscheme, just one way, by all of its symmetry hyperplanes at once, which divide it into 384 4-orthoschemes that all meet at the center of the 4-cube. More generally, any regular polytope can be dissected into ''g'' instances of its characteristic orthoscheme that all meet at the regular polytope's center. The number ''g'' is the ''order'' of the polytope, the number of reflected instances of its characteristic orthoscheme that comprise the polytope when a ''single'' mirror-surfaced orthoscheme instance is reflected in its own facets. More generally still, characteristic simplexes are able to fill uniform polytopes because they possess all the requisite elements of the polytope. They also possess all the requisite angles between elements (from 90 degrees on down). The characteristic simplexes are the
genetic code Genetic code is a set of rules used by living cell (biology), cells to Translation (biology), translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished ...
s of polytopes: like a Swiss Army knife, they contain one of everything needed to construct the polytope by replication. Every regular polytope, including the regular 5-cell, has its characteristic orthoscheme. There is a 4-orthoscheme which is the characteristic 5-cell of the regular 5-cell. It is a tetrahedral pyramid based on the characteristic tetrahedron of the regular tetrahedron. The regular 5-cell can be dissected into 120 instances of this characteristic 4-orthoscheme just one way, by all of its symmetry hyperplanes at once, which divide it into 120 4-orthoschemes that all meet at the center of the regular 5-cell. The characteristic 5-cell (4-orthoscheme) of the regular 5-cell has four more edges than its base characteristic tetrahedron (3-orthoscheme), which join the four vertices of the base to its apex (the fifth vertex of the 4-orthoscheme, at the center of the regular 5-cell). The four edges of each 4-orthoscheme which meet at the center of a regular 4-polytope are of unequal length, because they are the four characteristic radii of the regular 4-polytope: a vertex radius, an edge center radius, a face center radius, and a cell center radius. If the regular 5-cell has unit radius and edge length \sqrt, its characteristic 5-cell's ten edges have lengths \sqrt, \sqrt, \sqrt around its exterior right-triangle face (the edges opposite the ''characteristic angles'' 𝟀, 𝝉, 𝟁), plus \sqrt, \sqrt, \sqrt (the other three edges of the exterior 3-orthoscheme facet the characteristic tetrahedron, which are the ''characteristic radii'' of the regular tetrahedron), plus \sqrt, \sqrt, \sqrt, \sqrt (edges which are the characteristic radii of the regular 5-cell). The 4-edge path along orthogonal edges of the orthoscheme is \sqrt, \sqrt, \sqrt, \sqrt, first from a regular 5-cell vertex to a regular 5-cell edge center, then turning 90° to a regular 5-cell face center, then turning 90° to a regular 5-cell tetrahedral cell center, then turning 90° to the regular 5-cell center.


Isometries

There are many lower symmetry forms of the 5-cell, including these found as uniform polytope
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
s: The tetrahedral pyramid is a special case of a 5-cell, a polyhedral pyramid, constructed as a regular
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
base in a 3-space
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
, and an
apex The apex is the highest point of something. The word may also refer to: Arts and media Fictional entities * Apex (comics) A-Bomb Abomination Absorbing Man Abraxas Abyss Abyss is the name of two characters appearing in Ameri ...
point ''above'' the hyperplane. The four ''sides'' of the pyramid are made of
triangular pyramid In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex ...
cells. Many
uniform 5-polytope In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope Facet (geometry), facets. The complete set of convex uniform 5-polytopes ...
s have tetrahedral pyramid
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
s with
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
s ( )∨. Other uniform 5-polytopes have irregular 5-cell vertex figures. The symmetry of a vertex figure of a
uniform polytope In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform Facet (mathematics), facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the sam ...
is represented by removing the ringed nodes of the Coxeter diagram.


Construction


As a Boerdijk–Coxeter helix

A 5-cell can be constructed as a
Boerdijk–Coxeter helix The Boerdijk–Coxeter helix, named after H. S. M. Coxeter and , is a linear stacking of regular tetrahedron, tetrahedra, arranged so that the edges of the complex that belong to only one tetrahedron form three intertwined helix, helices. Ther ...
of five chained tetrahedra, folded into a 4-dimensional ring. The 10 triangle faces can be seen in a 2D net within a
triangular tiling In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilater ...
, with 6 triangles around every vertex, although folding into 4-dimensions causes edges to coincide. The purple edges form a
regular pentagon In geometry, a pentagon () is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is 540°. A pentagon may be simple or list of self-intersecting polygons, self-intersecting. A self-intersecting ...
which is the
Petrie polygon In geometry, a Petrie polygon for a regular polytope of dimensions is a skew polygon in which every consecutive sides (but no ) belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a reg ...
of the 5-cell. The blue edges connect every second vertex, forming a
pentagram A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle around ...
which is the ''Clifford polygon'' of the 5-cell. The pentagram's blue edges are chords of the 5-cell's ''isocline'', the circular rotational path its vertices take during an isoclinic rotation, also known as a
Clifford displacement In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article ''rotation'' means ''rotational dis ...
.


Net

When a net of five tetrahedra is folded up in 4-dimensional space such that each tetrahedron is face bonded to the other four, the resulting 5-cell has a total of 5 vertices, 10 edges, and 10 faces. Four edges meet at each vertex, and three tetrahedral cells meet at each edge. This makes the six tetrahedron as its
cell Cell most often refers to: * Cell (biology), the functional basic unit of life * Cellphone, a phone connected to a cellular network * Clandestine cell, a penetration-resistant form of a secret or outlawed organization * Electrochemical cell, a de ...
.


Coordinates

The simplest set of
Cartesian coordinates In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
is: (2,0,0,0), (0,2,0,0), (0,0,2,0), (0,0,0,2), (𝜙,𝜙,𝜙,𝜙), with edge length 2, where 𝜙 is the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \fr ...
. While these coordinates are not origin-centered, subtracting (1,1,1,1)/(2-\tfrac) from each translates the 4-polytope's
circumcenter In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcen ...
to the origin with radius 2(\phi-1/(2-\tfrac)) =\sqrt\approx 1.7888, with the following coordinates: :\left(\tfrac-3, 1, 1, 1\right)/(\tfrac-2) :\left(1,\tfrac-3,1,1 \right)/(\tfrac-2) :\left(1,1,\tfrac-3,1 \right)/(\tfrac-2) :\left(1,1,1,\tfrac-3 \right)/(\tfrac-2) :\left(\tfrac,\tfrac,\tfrac,\tfrac \right)/(\tfrac-2) The following set of origin-centered coordinates with the same radius and edge length as above can be seen as a hyperpyramid with a regular tetrahedral base in 3-space: :\left( 1, 1, 1, \frac\sqrt\right) :\left( 1,-1,-1,\frac\sqrt \right) :\left(-1, 1,-1,\frac\sqrt \right) :\left(-1,-1, 1,\frac\sqrt \right) :\left( 0, 0, 0,\frac\sqrt \right) Scaling these or the previous set of coordinates by \tfrac give ''unit-radius'' origin-centered regular 5-cells with edge lengths \sqrt. The hyperpyramid has coordinates: :\left( \sqrt, \sqrt, \sqrt, -1 \right)/4 :\left( \sqrt,-\sqrt,-\sqrt, -1 \right)/4 :\left(-\sqrt, \sqrt,-\sqrt, -1 \right)/4 :\left(-\sqrt,-\sqrt, \sqrt, -1 \right)/4 :\left( 0, 0, 0, 1 \right) Coordinates for the vertices of another origin-centered regular 5-cell with edge length 2 and radius \sqrt\approx 1.265 are: :\left( \frac,\ \frac,\ \frac,\ \pm1\right) :\left( \frac,\ \frac,\ \frac,\ 0 \right) :\left( \frac,\ -\sqrt,\ 0,\ 0 \right) :\left( -2\sqrt,\ 0,\ 0,\ 0 \right) Scaling these by \sqrt to unit-radius and edge length \sqrt gives: :\left(\sqrt, \sqrt, \sqrt,\pm\sqrt \right)/(4\sqrt) :\left(\sqrt, \sqrt, -\sqrt,0\right)/(4\sqrt) :\left(\sqrt,-\sqrt,0,0\right)/(4\sqrt) :\left(-1, 0, 0, 0 \right) The vertices of a 4-simplex (with edge and radius 1) can be more simply constructed on a
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
in 5-space, as (distinct) permutations of (0,0,0,0,1) ''or'' (0,1,1,1,1); in these positions it is a
facet Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cu ...
of, respectively, the
5-orthoplex In five-dimensional geometry, a 5-orthoplex, or 5- cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regula ...
or the rectified penteract.


Compound

The compound of two 5-cells in dual configurations can be seen in this A5
Coxeter plane In mathematics, a Coxeter element is an element of an irreducible Coxeter group which is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which hav ...
projection, with a red and blue 5-cell vertices and edges. This compound has 3,3,3 symmetry, order 240. The intersection of these two 5-cells is a uniform bitruncated 5-cell. = ∩ . : This compound can be seen as the 4D analogue of the 2D
hexagram , can be seen as a compound polygon, compound composed of an upwards (blue here) and downwards (pink) facing equilateral triangle, with their intersection as a regular hexagon (in green). A hexagram (Greek language, Greek) or sexagram (Latin l ...
{} and the 3D
compound of two tetrahedra The stellated octahedron is the only stellation of the octahedron. It is also called the stella octangula (Latin for "eight-pointed star"), a name given to it by Johannes Kepler in 1609, though it was known to earlier geometers. It was depicte ...
.


Related polytopes and honeycombs

The pentachoron (5-cell) is the simplest of 9 uniform polychora constructed from the ,3,3
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
. It is in the sequence of regular polychora with a
tetrahedral In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
: the
tesseract In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six ...
and
120-cell In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hec ...
of Euclidean 4-space, and the hexagonal tiling honeycomb of hyperbolic space. It is one of three
regular 4-polytope In mathematics, a regular 4-polytope or regular polychoron is a regular polytope, regular 4-polytope, four-dimensional polytope. They are the four-dimensional analogues of the Regular polyhedron, regular polyhedra in three dimensions and the regul ...
s with tetrahedral cells, along with the
16-cell In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the ...
and
600-cell In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from ...
. The order-6 tetrahedral honeycomb of hyperbolic space also has tetrahedral cells. It is self-dual like the
24-cell In four-dimensional space, four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octa ...
, having a
palindromic A palindrome ( /ˈpæl.ɪn.droʊm/) is a word, number, phrase, or other sequence of symbols that reads the same backwards as forwards, such as ''madam'' or '' racecar'', the date " 02/02/2020" and the sentence: "A man, a plan, a canal – Pana ...
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
.


Notes


Citations


References

* * * * * * T. Gosset: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900 * H.S.M. Coxeter: ** *** p. 120, §7.2. see illustration Fig 7.2A *** p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5) ** ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* * John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ''The Symmetries of Things'' 2008, (Chapter 26. pp. 409: Hemicubes: 1n1) * Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966) *


External links

* *
Der 5-Zeller (5-cell)
Marco Möller's Regular polytopes in R4 (German)




pyrochoron
{{Authority control Regular 4-polytopes Pyramids (geometry)