Alpha Recursion Theory
   HOME





Alpha Recursion Theory
In recursion theory, α recursion theory is a generalisation of recursion theory to subsets of admissible ordinals \alpha. An admissible set is closed under \Sigma_1(L_\alpha) functions, where L_\xi denotes a rank of Godel's constructible hierarchy. \alpha is an admissible ordinal if L_ is a model of Kripke–Platek set theory. In what follows \alpha is considered to be fixed. Definitions The objects of study in \alpha recursion are subsets of \alpha. These sets are said to have some properties: *A set A\subseteq\alpha is said to be \alpha-recursively-enumerable if it is \Sigma_1 definable over L_\alpha, possibly with parameters from L_\alpha in the definition. *A is \alpha-recursive if both A and \alpha \setminus A (its relative complement in \alpha) are \alpha-recursively-enumerable. It's of note that \alpha-recursive sets are members of L_ by definition of L. *Members of L_\alpha are called \alpha-finite and play a similar role to the finite numbers in classical recursion th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Recursion Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definable set, definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function (mathematics), function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of computational complexity theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Admissible Ordinal
In set theory, an ordinal number ''α'' is an admissible ordinal if L''α'' is an admissible set (that is, a transitive model of Kripke–Platek set theory); in other words, ''α'' is admissible when ''α'' is a limit ordinal and L''α'' ⊧ Σ0-collection.. See in particulap. 265. The term was coined by Richard Platek in 1966. The first two admissible ordinals are ω and \omega_1^ (the least nonrecursive ordinal, also called the Church–Kleene ordinal). Any regular uncountable cardinal is an admissible ordinal. By a theorem of Sacks, the countable admissible ordinals are exactly those constructed in a manner similar to the Church–Kleene ordinal, but for Turing machines with oracles. One sometimes writes \omega_\alpha^ for the \alpha-th ordinal that is either admissible or a limit of admissibles; an ordinal that is both is called ''recursively inaccessible''. There exists a theory of large ordinals in this manner that is highly parallel to that of (small) large ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Constructible Hierarchy
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchy L_\alpha. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result. What ''L'' is L can be thought of as being built in "stages" resem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE