HOME





Truncated Power Function
In mathematics, the truncated power function with exponent n is defined as :x_+^n = \begin x^n &:\ x > 0 \\ 0 &:\ x \le 0. \end In particular, :x_+ = \begin x &:\ x > 0 \\ 0 &:\ x \le 0. \end and interpret the exponent as conventional power. Relations * Truncated power functions can be used for construction of B-spline In numerical analysis, a B-spline (short for basis spline) is a type of Spline (mathematics), spline function designed to have minimal Support (mathematics), support (overlap) for a given Degree of a polynomial, degree, smoothness, and set of bre ...s. * x \mapsto x_+^0 is the Heaviside function. * \chi_{ indicator function. * Truncated power functions are refinable function">refinable. See also * Macaulay brackets External linksTruncated Power Function on MathWorld References Numerical analysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Function
In mathematics, exponentiation, denoted , is an operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product of multiplying bases: b^n = \underbrace_.In particular, b^1=b. The exponent is usually shown as a superscript to the right of the base as or in computer code as b^n. This binary operation is often read as " to the power "; it may also be referred to as " raised to the th power", "the th power of ", or, most briefly, " to the ". The above definition of b^n immediately implies several properties, in particular the multiplication rule:There are three common notations for multiplication: x\times y is most commonly used for explicit numbers and at a very elementary level; xy is most common when variables are used; x\cdot y is used for emphasizing that one talks of multiplication or when omitting the multiplication sign would ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

B-spline
In numerical analysis, a B-spline (short for basis spline) is a type of Spline (mathematics), spline function designed to have minimal Support (mathematics), support (overlap) for a given Degree of a polynomial, degree, smoothness, and set of breakpoints (Knot (mathematics), knots that partition its Domain of a function, domain), making it a fundamental building block for all spline functions of that degree. A B-spline is defined as a piecewise polynomial of Order (mathematics), order n, meaning a degree of n - 1. It’s built from sections that meet at these knots, where the continuity of the function and its Derivative, derivatives depends on how often each knot repeats (its multiplicity). Any spline function of a specific degree can be uniquely expressed as a linear combination of B-splines of that degree over the same knots, a property that makes them versatile in mathematical modeling. A special subtype, cardinal B-splines, uses equidistant knots. The concept of B-splines tra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heaviside Function
The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value are in use. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one. The function was originally developed in operational calculus for the solution of differential equations, where it represents a signal that switches on at a specified time and stays switched on indefinitely. Heaviside developed the operational calculus as a tool in the analysis of telegraphic communications and represented the function as . Formulation Taking the convention that , the Heaviside function may be defined as: * a piecewise function: H(x) := \begin 1, & x \geq 0 \\ 0, & x * an indicator function: H(x) := \mathbf_=\mathbf 1_(x) For the alt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , then the indicator function of is the function \mathbf_A defined by \mathbf_\!(x) = 1 if x \in A, and \mathbf_\!(x) = 0 otherwise. Other common notations are and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, \mathbf_(x) = \left x\in A\ \right For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition Given an arbitrary set , the indicator function of a subset of is the function \mathbf_A \colon X \mapsto \ defined by \operatorname\mathbf_A\!( x ) = \begin 1 & \text x \in A \\ 0 & \text x \notin A \,. \end The Iverson bracket provides the equivalent notation \left x\in A\ \right/math> or that can be used instead of \mathbf_\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Refinable Function
In mathematics, in the area of wavelet analysis, a refinable function is a function which fulfils some kind of self-similarity. A function \varphi is called refinable with respect to the mask h if :\varphi(x)=2\cdot\sum_^ h_k\cdot\varphi(2\cdot x-k) This condition is called refinement equation, dilation equation or two-scale equation. Using the convolution (denoted by a star, *) of a function with a discrete mask and the dilation operator D one can write more concisely: :\varphi=2\cdot D_ (h * \varphi) It means that one obtains the function, again, if you convolve the function with a discrete mask and then scale it back. There is a similarity to iterated function systems and de Rham curves. The operator \varphi\mapsto 2\cdot D_ (h * \varphi) is linear. A refinable function is an eigenfunction of that operator. Its absolute value is not uniquely defined. That is, if \varphi is a refinable function, then for every c the function c\cdot\varphi is refinable, too. These functions play a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Macaulay Brackets
Macaulay brackets are a notation used to describe the ramp function :\ = \begin 0, & x < 0 \\ x, & x \ge 0. \end A popular alternative transcription uses angle brackets, ''viz.'' \langle x \rangle.Lecture 12: Beam Deflections by Discontinuity Functions.
Introduction to Aerospace Structures. Department of Aerospace Engineering Sciences, University of Colorado at Boulder Another commonly used notation is x+ or (x)+ for the positive part of x, which avoids conflicts with \ for set notation
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]