HOME



picture info

B-Spline
In numerical analysis, a B-spline (short for basis spline) is a type of Spline (mathematics), spline function designed to have minimal Support (mathematics), support (overlap) for a given Degree of a polynomial, degree, smoothness, and set of breakpoints (Knot (mathematics), knots that partition its Domain of a function, domain), making it a fundamental building block for all spline functions of that degree. A B-spline is defined as a piecewise polynomial of Order (mathematics), order n, meaning a degree of n - 1. It’s built from sections that meet at these knots, where the continuity of the function and its Derivative, derivatives depends on how often each knot repeats (its multiplicity). Any spline function of a specific degree can be uniquely expressed as a linear combination of B-splines of that degree over the same knots, a property that makes them versatile in mathematical modeling. A special subtype, cardinal B-splines, uses equidistant knots. The concept of B-splines tra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




De Boor's Algorithm
In the mathematical subfield of numerical analysis, de Boor's algorithmC. de Boor 971 "Subroutine package for calculating with B-splines", Techn.Rep. LA-4728-MS, Los Alamos Sci.Lab, Los Alamos NM; p. 109, 121. is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified, potentially faster variants of the de Boor algorithm have been created but they suffer from comparatively lower stability. Introduction A general introduction to B-splines is given in the main article. Here we discuss de Boor's algorithm, an efficient and numerically stable scheme to evaluate a spline curve \mathbf(x) at position x . The curve is built from a sum of B-spline functions B_(x) multiplied with potentially vector-valued constants \mathbf_i , called control points, \mathbf(x) = \sum_i \mathbf_i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt to find approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences like economics, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer-aided Design
Computer-aided design (CAD) is the use of computers (or ) to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software help protect products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used. Its use in designing electronic systems is known as ''electronic design automation'' (''EDA''). In mechanical design it is known as ''mechanical design automation'' (''MDA''), which includes the process of creating a technical drawing with the use of computer software. CAD software for mechanical design uses either vector-based graphics to depict t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Support (mathematics)
In mathematics, the support of a real-valued function f is the subset of the function domain of elements that are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used widely in mathematical analysis. Formulation Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. The notion of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangular Function
A triangular function (also known as a triangle function, hat function, or tent function) is a function whose graph takes the shape of a triangle. Often this is an isosceles triangle of height 1 and base 2 in which case it is referred to as ''the'' triangular function. Triangular functions are useful in signal processing and ''communication systems engineering'' as representations of idealized signals, and the triangular function specifically as an integral transform kernel function from which more realistic signals can be derived, for example in kernel density estimation. It also has applications in pulse-code modulation as a pulse shape for transmitting Digital signal (electronics), digital signals and as a matched filter for receiving the signals. It is also used to define the triangular window sometimes called the Bartlett window. Definitions The most common definition is as a piecewise function: : \begin \operatorname(x) = \Lambda(x) \ &\overset \ \max\big(1 - , x, , 0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cardinal Quartic B-spline
Cardinal or The Cardinal most commonly refers to * Cardinalidae, a family of North and South American birds **''Cardinalis'', genus of three species in the family Cardinalidae ***Northern cardinal, ''Cardinalis cardinalis'', the common cardinal of eastern North America ***Pyrrhuloxia or desert cardinal, ''Cardinalis sinuatus'', found in southwest North America ***Vermilion cardinal, ''Cardinalis phoeniceus'', found in Colombia and Venezuela * Cardinal (Catholic Church), a senior official of the Catholic Church **Member of the College of Cardinals * Cardinal Health, a health care services company * Cardinal number ** Large cardinal * Cardinal direction, one of the four primary directions: north, south, east, and west * Arizona Cardinals, an American professional football team * St. Louis Cardinals, an American professional baseball team Cardinal or The Cardinal may also refer to: Animals Birds In addition to the aforementioned cardinalids: * '' Paroaria'', a South American g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Differentiation
In numerical analysis, numerical differentiation algorithms estimate the derivative of a mathematical function or subroutine using values of the function and perhaps other knowledge about the function. Finite differences The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points and . Choosing a small number , represents a small change in , and it can be either positive or negative. The slope of this line is \frac. This expression is Newton's difference quotient (also known as a first-order divided difference). The slope of this secant line differs from the slope of the tangent line by an amount that is approximately proportional to . As approaches zero, the slope of the secant line approaches the slope of the tangent line. Therefore, the true derivative of at is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tange ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]