HOME





Tetrad (general Relativity)
In general relativity, a frame field (also called a tetrad or vierbein) is a set of four pointwise- orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by \vec_0 and the three spacelike unit vector fields by \vec_1, \vec_2, \, \vec_3. All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field. Frame fields were introduced into general relativity by Albert Einstein in 1928 and by Hermann Weyl in 1929.Hermann Weyl "Elektron und Gravitation I", ''Zeitschrift Physik'', 56, p330–352, 1929. The index notation for tetrads is explained in tetrad (index notation). Physical interpretation Frame fields of a Lorentzian manifold always correspond to a family of ideal observers immersed in the given spacetime; the integral curves of the timelike unit vector field are the worldlines of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General theory of relativity, relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time in physics, time, or four-dimensional spacetime. In particular, the ''curvature of spacetime'' is directly related to the energy and momentum of whatever is present, including matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations. Newton's law of universal gravitation, which describes gravity in classical mechanics, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Laboratory Frame
In theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime. The term is most often used in the context of the application of local inertial frames to small regions of a gravitational field. Although gravitational tidal forces will cause the background geometry to become noticeably non-Euclidean over larger regions, if we restrict ourselves to a sufficiently small region containing a cluster of objects falling together in an ''effectively'' uniform gravitational field, their physics can be described as the physics of that cluster in a space free from explicit background gravitational effects. Equivalence principle When constructing his general theory of relativity, Einstein made the following observation: a freely falling object in a gravitational field will not be able to detect the existence of the field by making local measu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Einstein Summation Convention
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in physics applications that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916. Introduction Statement of convention According to this convention, when an index variable appears twice in a single term and is not otherwise defined (see Free and bound variables), it implies summation of that term over all the values of the index. So where the indices can range over the set , y = \sum_^3 x^i e_i = x^1 e_1 + x^2 e_2 + x^3 e_3 is simplified by the convention to: y = x^i e_i The upper indices are not exponen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coordinate Basis
In mathematics and mathematical physics, a coordinate basis or holonomic basis for a differentiable manifold is a set of basis vector fields defined at every point of a region of the manifold as :\mathbf_ = \lim_ \frac , where is the displacement vector between the point and a nearby point whose coordinate separation from is along the coordinate curve (i.e. the curve on the manifold through for which the local coordinate varies and all other coordinates are constant). It is possible to make an association between such a basis and directional derivative operators. Given a parameterized curve on the manifold defined by with the tangent vector , where , and a function defined in a neighbourhood of , the variation of along can be written as :\frac = \frac\frac = u^ \frac f . Since we have that , the identification is often made between a coordinate basis vector and the partial derivative operator , under the interpretation of vectors as operators acting on functions. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirac Equation In Curved Spacetime
In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime (Minkowski space) to curved spacetime, a general Lorentzian manifold. Mathematical formulation Spacetime In full generality the equation can be defined on M or (M,\mathbf) a pseudo-Riemannian manifold, but for concreteness we restrict to pseudo-Riemannian manifold with signature (- + + +). The metric is referred to as \mathbf, or g_ in abstract index notation. Frame fields We use a set of vierbein or frame fields \ = \, which are a set of vector fields (which are not necessarily defined globally on M). Their defining equation is :g_e_\mu^a e_\nu^b = \eta_. The vierbein defines a local rest frame, allowing the constant Gamma matrices to act at each spacetime point. In differential-geometric language, the vierbein is equivalent to a section of the frame bundle, and so defines a local trivialization of the frame bundle. Spin connection To ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coordinate Chart
In topology, a topological manifold is a topological space that locally resembles real ''n''- dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure). Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure. Formal definition A topological space ''X'' is called locally Euclidean if there is a non-negative integer ''n'' such that every point in ''X'' has a neighborhood which is homeomorphic to real ''n''-space R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lorentz Force
In electromagnetism, the Lorentz force is the force exerted on a charged particle by electric and magnetic fields. It determines how charged particles move in electromagnetic environments and underlies many physical phenomena, from the operation of electric motors and particle accelerators to the behavior of plasmas. The Lorentz force has two components. The electric force acts in the direction of the electric field for positive charges and opposite to it for negative charges, tending to accelerate the particle in a straight line. The magnetic force is perpendicular to both the particle's velocity and the magnetic field, and it causes the particle to move along a curved trajectory, often circular or helical in form, depending on the directions of the fields. Variations on the force law describe the magnetic force on a current-carrying wire (sometimes called Laplace force), and the electromotive force in a wire loop moving through a magnetic field, as described by Faraday's la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electrovacuum Solution
In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) ''source-free'' Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) ''Einstein–Maxwell solutions''. Definition In general relativity, the geometric setting for physical phenomena is a Lorentzian manifold, which is interpreted as a curved spacetime, and which is specified by defining a metric tensor g_ (or by defining a frame field). The Riemann curvature tensor R_ of this manifold and associated quantities such as the Einstein tensor G^, are well-defined. In general relativity, they can be interpreted as geometric manifestations (curvature and forces) of the gravitational field. We also need to specify an electromagnetic field by defining an el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and even by industry. Further, both spellings are often used ''within'' a particular industry or country. Industries in British English-speaking countries typically use the "gauge" spelling. is the pressure relative to the ambient pressure. Various #Units, units are used to express pressure. Some of these derive from a unit of force divided by a unit of area; the International System of Units, SI unit of pressure, the Pascal (unit), pascal (Pa), for example, is one newton (unit), newton per square metre (N/m2); similarly, the Pound (force), pound-force per square inch (Pound per square inch, psi, symbol lbf/in2) is the traditional unit of pressure in the imperial units, imperial and United States customary units, US customary systems. Pressure ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrostatic Equilibrium
In fluid mechanics, hydrostatic equilibrium, also called hydrostatic balance and hydrostasy, is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the atmosphere of Earth into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical. Hydrostatic equilibrium is the distinguishing criterion between dwarf planets and small solar system bodies, and features in astrophysics and planetary geology. Said qualification of equilibrium indicates that the shape of the object is symmetrically rounded, mostly due to rotation, into an ellipsoid, where any irregular surface features are consequent to a relatively thin solid crust. In addition to the Sun, there are a dozen or s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fluid Solution
In general relativity, a fluid solution is an exact solutions in general relativity, exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid. In astrophysics, fluid solutions are often employed as stellar models, since a perfect gas can be thought of as a special case of a perfect fluid. In physical cosmology, cosmology, fluid solutions are often used as cosmological models. Mathematical definition The stress–energy tensor of a relativistic fluid can be written in the form :T^ = \mu \, u^a \, u^b + p \, h^ + \left( u^a \, q^b + q^a \, u^b \right) + \pi^ Here * the world lines of the fluid elements are the integral curves of the four-velocity, velocity vector u^a, * the projection tensor h_ = g_ + u_a \, u_b projects other tensors onto hyperplane elements orthogonal to u^a, * the matter density is given by the scalar function \mu, * the pressure is given by the scalar function p, * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Four-acceleration
In the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has applications in areas such as the annihilation of antiprotons, resonance of strange particles and radiation of an accelerated charge. Four-acceleration in inertial coordinates In inertial coordinates in special relativity, four-acceleration \mathbf is defined as the rate of change in four-velocity \mathbf with respect to the particle's proper time along its worldline. We can say: \begin \mathbf = \frac &= \left(\gamma_u\dot\gamma_u c,\, \gamma_u^2\mathbf a + \gamma_u\dot\gamma_u\mathbf u\right) \\ &= \left( \gamma_u^4\frac,\, \gamma_u^2\mathbf + \gamma_u^4\frac\mathbf \right) \\ &= \left( \gamma_u^4\frac,\, \gamma_u^4\left(\mathbf + \frac\right) \right), \end where * \math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]