Four-acceleration
   HOME

TheInfoList



OR:

In the
theory of relativity The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in ...
, four-acceleration is a
four-vector In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a ...
(vector in four-dimensional
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
) that is analogous to classical
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by t ...
(a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has applications in areas such as the annihilation of
antiproton The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The exis ...
s, resonance of
strange particles A strange particle is an elementary particle with a strangeness quantum number different from zero. Strange particles are members of a large family of elementary particles carrying the quantum number of strangeness, including several cases where th ...
and radiation of an accelerated charge.


Four-acceleration in inertial coordinates

In inertial coordinates in
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
, four-acceleration \mathbf is defined as the rate of change in
four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetimeTechnically, the four-vector should be thought of as residing in the tangent space of a point in spacetime, spacet ...
\mathbf with respect to the particle's
proper time In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval ...
along its worldline. We can say: \begin \mathbf = \frac &= \left(\gamma_u\dot\gamma_u c,\, \gamma_u^2\mathbf a + \gamma_u\dot\gamma_u\mathbf u\right) \\ &= \left( \gamma_u^4\frac,\, \gamma_u^2\mathbf + \gamma_u^4\frac\mathbf \right) \\ &= \left( \gamma_u^4\frac,\, \gamma_u^4\left(\mathbf + \frac\right) \right), \end where * \mathbf a = \frac , with \mathbf a the three-acceleration and \mathbf u the three-velocity, and * \dot\gamma_u = \frac \gamma_u^3 = \frac \frac, and * \gamma_u is the
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
for the speed u (with , \mathbf, = u). A dot above a variable indicates a derivative with respect to the coordinate time in a given reference frame, not the proper time \tau (in other terms, \dot\gamma_u = \frac). In an instantaneously co-moving inertial reference frame \mathbf u = 0, \gamma_u = 1 and \dot\gamma_u = 0, i.e. in such a reference frame \mathbf = \left(0, \mathbf a\right) . Geometrically, four-acceleration is a curvature vector of a worldline. Therefore, the magnitude of the four-acceleration (which is an invariant scalar) is equal to the proper acceleration that a moving particle "feels" moving along a worldline. A worldline having constant four-acceleration is a Minkowski-circle i.e. hyperbola (see ''hyperbolic motion'') The
scalar product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alge ...
of a particle's
four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetimeTechnically, the four-vector should be thought of as residing in the tangent space of a point in spacetime, spacet ...
and its four-acceleration is always 0. Even at relativistic speeds four-acceleration is related to the four-force: F^\mu = m A^\mu , where is the invariant mass of a particle. When the four-force is zero, only gravitation affects the trajectory of a particle, and the four-vector equivalent of Newton's second law above reduces to the geodesic equation. The four-acceleration of a particle executing geodesic motion is zero. This corresponds to gravity not being a force. Four-acceleration is different from what we understand by acceleration as defined in Newtonian physics, where gravity is treated as a force.


Four-acceleration in non-inertial coordinates

In non-inertial coordinates, which include accelerated coordinates in special relativity and all coordinates in
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, the acceleration four-vector is related to the
four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetimeTechnically, the four-vector should be thought of as residing in the tangent space of a point in spacetime, spacet ...
through an absolute derivative with respect to proper time. A^\lambda := \frac = \frac + \Gamma^\lambda _U^\mu U^\nu In inertial coordinates the
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distanc ...
\Gamma^\lambda _ are all zero, so this formula is compatible with the formula given earlier. In special relativity the coordinates are those of a rectilinear inertial frame, so the
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distanc ...
term vanishes, but sometimes when authors use curved coordinates in order to describe an accelerated frame, the frame of reference isn't inertial, they will still describe the physics as special relativistic because the metric is just a frame transformation of the
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
metric. In that case this is the expression that must be used because the
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distanc ...
are no longer all zero.


See also

*
Four-vector In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a ...
*
Four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetimeTechnically, the four-vector should be thought of as residing in the tangent space of a point in spacetime, spacet ...
*
Four-momentum In special relativity, four-momentum (also called momentum-energy or momenergy ) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is ...
* Four-force *
Four-gradient In differential geometry, the four-gradient (or 4-gradient) \boldsymbol is the four-vector analogue of the gradient \vec from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and r ...
* Proper acceleration


References

* * *


External links


Curvature vector
on Britannica {{DEFAULTSORT:Four-Acceleration Four-vectors Acceleration