HOME



picture info

Ryzen Threadripper
Threadripper, or Ryzen Threadripper, is a brand of HEDT (high-end desktop) and workstation multi-core x86-64 microprocessors designed and marketed by Advanced Micro Devices (AMD), and based on the Zen microarchitecture. It consists of central processing units (CPUs) marketed for mainstream and workstation segments, and as such comes in two line-ups, Threadripper and Threadripper PRO respectively. Background Threadripper, which is geared for high-end desktops (HEDT) and workstations, was not developed as part of a business plan or a specific roadmap. Instead, a small team inside AMD saw an opportunity to give AMD the lead in desktop CPU performance. After some progress was made in their spare time, the project was greenlit and put in an official roadmap by 2016. Characteristics Threadripper chips have higher core counts, increased power requirements, support faster memory, and more expansion opportunities. The Zen 4 core's pipelines use a high-density leading-edge 5 nm process ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AMD Ryzen Threadripper Logo
Advanced Micro Devices, Inc. (AMD) is an American multinational corporation and technology company headquartered in Santa Clara, California and maintains significant operations in Austin, Texas. AMD is a hardware and fabless company that designs and develops central processing units (CPUs), graphics processing units (GPUs), field-programmable gate arrays (FPGAs), system-on-chip (SoC), and high-performance computer solutions. AMD serves a wide range of business and consumer markets, including gaming, data centers, artificial intelligence (AI), and embedded systems. AMD's main products include microprocessors, motherboard chipsets, embedded processors, and graphics processors for servers, workstations, personal computers, and embedded system applications. The company has also expanded into new markets, such as the data center, gaming, and high-performance computing markets. AMD's processors are used in a wide range of computing devices, including personal computers, servers, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zen 5
Zen 5 (''"Nirvana"'') is the name for a CPU microarchitecture by AMD, shown on their roadmap in May 2022, launched for mobile in July 2024 and for desktop in August 2024. It is the successor to Zen 4 and is currently fabricated on TSMC's 5 nm process, N4P process. Zen 5 is also planned to be fabricated on the 3 nm process, N3E process in the future. The Zen 5 microarchitecture powers Ryzen 9000 series desktop processors (codenamed "Granite Ridge"), Epyc 9005 server processors (codenamed "Turin"), and Ryzen AI 300 thin and light mobile processors (codenamed "Strix Point"). Background Zen 5 was first officially mentioned during AMD's ''Ryzen Processors: One Year Later'' presentation on April 9, 2018. A roadmap shown during AMD's Financial Analyst Day on June 9, 2022 confirmed that Zen 5 and Zen 5c would be launching in 3nm and 4nm variants in 2024. The earliest details on the Zen 5 architecture promised a "re-pipelined front end and wide issue" with "integrated AI and Ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bit Manipulation Instruction Sets
Bit manipulation instructions sets (BMI sets) are extensions to the x86 instruction set architecture for microprocessors from Intel and AMD. The purpose of these instruction sets is to improve the speed of bit manipulation. All the instructions in these sets are non-SIMD and operate only on general-purpose registers. There are two sets published by Intel: BMI (now referred to as BMI1) and BMI2; they were both introduced with the Haswell microarchitecture with BMI1 matching features offered by AMD's ABM instruction set and BMI2 extending them. Another two sets were published by AMD: ABM (''Advanced Bit Manipulation'', which is also a subset of SSE4a implemented by Intel as part of SSE4.2 and BMI1), and TBM (''Trailing Bit Manipulation'', an extension introduced with Piledriver-based processors as an extension to BMI1, but dropped again in Zen-based processors). ABM (Advanced Bit Manipulation) AMD was the first to introduce the instructions that now form Intel's BMI1 as part ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CVT16 Instruction Set
The F16C (previously/informally known as CVT16) instruction set is an x86 instruction set architecture extension which provides support for converting between half-precision and standard IEEE single-precision floating-point formats. History The CVT16 instruction set, announced by AMD on May 1, 2009, is an extension to the 128-bit SSE core instructions in the x86 and AMD64 instruction sets. CVT16 is a revision of part of the SSE5 instruction set proposal announced on August 30, 2007, which is supplemented by the XOP and FMA4 instruction sets. This revision makes the binary coding of the proposed new instructions more compatible with Intel's AVX instruction extensions, while the functionality of the instructions is unchanged. In recent documents, the name F16C is formally used in both Intel and AMD x86-64 architecture specifications. Technical information There are variants that convert four floating-point values in an XMM register or 8 floating-point values in a YMM re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FMA3 Instruction Set
The FMA instruction set is an extension to the 128- and 256-bit Streaming SIMD Extensions instructions in the x86 microprocessor instruction set to perform fused multiply–add (FMA) operations. There are two variants: * FMA4 is supported in AMD processors starting with the Bulldozer architecture. FMA4 was performed in hardware before FMA3 was. Support for FMA4 has been removed since Zen 1. * FMA3 is supported in AMD processors starting with the Piledriver architecture and Intel starting with Haswell processors and Broadwell processors since 2014. Instructions FMA3 and FMA4 instructions have almost identical functionality, but are not compatible. Both contain fused multiply–add (FMA) instructions for floating-point scalar and SIMD operations, but FMA3 instructions have three operands, while FMA4 ones have four. The FMA operation has the form ''d'' = round(''a'' · ''b'' + ''c''), where the round function performs a rounding to allow the result to fit within the destination r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




AVX-512
AVX-512 are 512-bit extensions to the 256-bit Advanced Vector Extensions SIMD instructions for x86 instruction set architecture (ISA) proposed by Intel in July 2013, and first implemented in the 2016 Intel Xeon Phi x200 (Knights Landing), and then later in a number of AMD and other Intel CPUs ( see list below). AVX-512 consists of multiple extensions that may be implemented independently. This policy is a departure from the historical requirement of implementing the entire instruction block. Only the core extension AVX-512F (AVX-512 Foundation) is required by all AVX-512 implementations. Besides widening most 256-bit instructions, the extensions introduce various new operations, such as new data conversions, scatter operations, and permutations. The number of AVX registers is increased from 16 to 32, and eight new "mask registers" are added, which allow for variable selection and blending of the results of instructions. In CPUs with the vector length (VL) extension—included in m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AVX2
Advanced Vector Extensions (AVX, also known as Gesher New Instructions and then Sandy Bridge New Instructions) are SIMD extensions to the x86 instruction set architecture for microprocessors from Intel and Advanced Micro Devices (AMD). They were proposed by Intel in March 2008 and first supported by Intel with the Sandy Bridge microarchitecture shipping in Q1 2011 and later by AMD with the Bulldozer microarchitecture shipping in Q4 2011. AVX provides new features, new instructions, and a new coding scheme. AVX2 (also known as Haswell New Instructions) expands most integer commands to 256 bits and introduces new instructions. They were first supported by Intel with the Haswell microarchitecture, which shipped in 2013. AVX-512 expands AVX to 512-bit support using a new EVEX prefix encoding proposed by Intel in July 2013 and first supported by Intel with the Knights Landing co-processor, which shipped in 2016. In conventional processors, AVX-512 was introduced with Skylak ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE4
SSE4 (Streaming SIMD Extensions 4) is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper;Intel Streaming SIMD Extensions 4 (SSE4) Instruction Set Innovation
, Intel.
more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in , in the presentation. SSE4 extended the SSE3 instruction set which was released in early 2004. All software using previous Intel SIMD instructio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE4a
SSE4 (Streaming SIMD Extensions 4) is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper;Intel Streaming SIMD Extensions 4 (SSE4) Instruction Set Innovation
, Intel.
more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in , in the presentation. SSE4 extended the instruction set which was released in early 2004. All software using ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SSSE3
Supplemental Streaming SIMD Extensions 3 (SSSE3 or SSE3S) is a SIMD instruction set created by Intel and is the fourth iteration of the SSE technology. History SSSE3 was first introduced with Intel processors based on the Core microarchitecture on June 26, 2006 with the "Woodcrest" Xeons. SSSE3 has been referred to by the codenames Tejas New Instructions (TNI) or Merom New Instructions (MNI) for the first processor designs intended to support it. SSSE3 has enhanced for HD audio/video decoding/encoding, for example AAC. Functionality SSSE3 contains 16 new discrete instructions. Each instruction can act on 64-bit MMX or 128-bit XMM registers. Therefore, Intel's materials refer to 32 new instructions. They include: * Twelve instructions that perform horizontal addition or subtraction operations. * Six instructions that evaluate absolute values. * Two instructions that perform multiply-and-add operations and speed up the evaluation of dot products. * Two instructions tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE3
SSE3, Streaming SIMD Extensions 3, also known by its Intel code name Prescott New Instructions (PNI), is the third iteration of the SSE instruction set for the IA-32 (x86) architecture. Intel introduced SSE3 in early 2004 with the Prescott revision of their Pentium 4 CPU. In April 2005, AMD introduced a subset of SSE3 in revision E (Venice and San Diego) of their Athlon 64 CPUs. The earlier SIMD instruction sets on the x86 platform, from oldest to newest, are MMX, 3DNow! (developed by AMD, no longer supported on newer CPUs), SSE, and SSE2. SSE3 contains 13 new instructions over SSE2. Changes The most notable change is the capability to work horizontally in a register, as opposed to the more or less strictly vertical operation of all previous SSE instructions. More specifically, instructions to add and subtract the multiple values stored within a single register have been added. These instructions can be used to speed up the implementation of a number of DSP and 3D op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]