Ronald Brown (mathematician)
Ronald Brown Learned Society of Wales, FLSW (born 4 January 1935 – 6 December 2024) was an English mathematician. He was a Professor in the School of Computer Science at Bangor University. He has authored many books and more than 160 journal articles. Brown died on 6 December 2024, at the age of 89. Education and career Born on 4 January 1935 in London, Brown attended Oxford University, obtaining a Bachelor of Arts, B.A. in 1956 and a D.Phil. in 1962. Brown began his teaching career during his doctorate work, serving as an assistant lecturer at the University of Liverpool before assuming the position of Lecturer. In 1964, he took a position at the University of Hull, serving first as a Senior Lecturer and then as a Reader before becoming a Professor of pure mathematics at Bangor University, then a part of the University of Wales, in 1970. Brown served as Professor of Pure Mathematics for 30 years; he also served during the 1983–84 term as a Professor for one month at Louis P ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
London
London is the Capital city, capital and List of urban areas in the United Kingdom, largest city of both England and the United Kingdom, with a population of in . London metropolitan area, Its wider metropolitan area is the largest in Western Europe, with a population of 14.9 million. London stands on the River Thames in southeast England, at the head of a tidal estuary down to the North Sea, and has been a major settlement for nearly 2,000 years. Its ancient core and financial centre, the City of London, was founded by the Roman Empire, Romans as Londinium and has retained its medieval boundaries. The City of Westminster, to the west of the City of London, has been the centuries-long host of Government of the United Kingdom, the national government and Parliament of the United Kingdom, parliament. London grew rapidly 19th-century London, in the 19th century, becoming the world's List of largest cities throughout history, largest city at the time. Since the 19th cen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electronic Journal
An academic journal (or scholarly journal or scientific journal) is a periodical publication in which scholarship relating to a particular academic discipline is published. They serve as permanent and transparent forums for the dissemination, scrutiny, and discussion of research. Unlike professional magazines or trade magazines, the articles are mostly written by researchers rather than staff writers employed by the journal. They nearly universally require peer review for research articles or other scrutiny from contemporaries competent and established in their respective fields. Academic journals trace their origins back to the 17th century. , it is estimated that over 28,100 active academic journals are in publication, with scopes ranging from the general sciences, as seen in journals like ''Science'' and ''Nature'', to highly specialized fields. These journals publish a variety of articles including original research, review articles, and perspectives. Content Content ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in: * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Higher-dimensional Algebra
In mathematics, especially (Higher category theory, higher) category theory, higher-dimensional algebra is the study of Categorification, categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra. Higher-dimensional categories A first step towards defining higher dimensional algebras is the concept of 2-category of higher category theory, followed by the more 'geometric' concept of double category. A higher level concept is thus defined as a Category (mathematics), category of categories, or super-category, which generalises to higher dimensions the notion of Category (mathematics), category – regarded as any structure which is an interpretation of Lawvere's axioms of the elementary theory of abstract categories (ETAC). Thus, a supercategory and also a functor category, super-category, can be regarded as natural extensions of the concepts of multicategory, meta-category, multicategory, and Turán graph, multi-graph, ''k ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Physics
Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics. Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical parts of our world. Classical mechanics Applying the techniques of mathematical physics to classical mechanics typically involves the rigorous, abstract, and advanced reformulation of Newtonian mechanics in terms of Lagrangian mechanics and Hamiltonian mechanics (including both approaches in the presence of constraints). Both formulations are embodied in analytical mechanics and lead ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Biology
Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of experiments to test scientific theories. The field is sometimes called mathematical biology or biomathematics to stress the mathematical side, or theoretical biology to stress the biological side. Theoretical biology focuses more on the development of theoretical principles for biology while mathematical biology focuses on the use of mathematical tools to study biological systems, even though the two terms interchange; overlapping as Artificial Immune Systems of Amorphous Computation. Mathematical biology aims at the mathematical representation and modeling of biological processes, using techniques and tools of applied mathematics. It ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homology Theory
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian groups called ''homology groups.'' This operation, in turn, allows one to associate various named ''homologies'' or ''homology theories'' to various other types of mathematical objects. Lastly, since there are many homology theories for topological spaces that produce the same answer, one also often speaks of the ''homology of a topological space''. (This latter notion of homology admits more intuitive descriptions for 1- or 2-dimensional topological spaces, and is sometimes referenced in popular mathematics.) There is also a related notion of the cohomology of a cochain complex, giving rise to various cohomology theories, in addition to the notion of the cohomology of a topological space. Homology of chain complexes To take the homology o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial function replacing the binary operation; * '' Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed , , say. Composition is then a total function: , so that . Special cases include: * '' Setoids'': sets that come with an equivalence relation, * '' G-sets'': sets equippe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ArXiv
arXiv (pronounced as "archive"—the X represents the Chi (letter), Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not Scholarly peer review, peer reviewed. It consists of scientific papers in the fields of mathematics, physics, astronomy, electrical engineering, computer science, quantitative biology, statistics, mathematical finance, and economics, which can be accessed online. In many fields of mathematics and physics, almost all scientific papers are self-archiving, self-archived on the arXiv repository before publication in a peer-reviewed journal. Some publishers also grant permission for authors to archive the peer-reviewed postprint. Begun on August 14, 1991, arXiv.org passed the half-million-article milestone on October 3, 2008, had hit a million by the end of 2014 and two million by the end of 2021. As of November 2024, the submission rate is about 24,000 arti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homology, Homotopy And Applications
''Homology, Homotopy and Applications'' is a peer-reviewed delayed open access mathematics journal published by International Press. It was established in 1999 and covers research on algebraic topology. The journal "Homology, Homotopy and Applications" has been founded in 1998 by Hvedri Inassaridze, Head of the Algebra Department of A. Razmadze Mathematical Institute of the Georgian Academy of Sciences, Professor of Tbilisi State University, Georgia. The journal is indexed by ''Mathematical Reviews'' and ''Zentralblatt MATH''. Its 2011 MCQ was 0.55, and according to the ''Journal Citation Reports'', the journal had a 2015 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 0.486, with a 5-year impact factor for that year of 0.654. Formerly completely open access, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |