Local Differential Privacy
   HOME



picture info

Local Differential Privacy
Local differential privacy (LDP) is a model of differential privacy with the added requirement that if an adversary has access to the personal responses of an individual in the database, that adversary will still be unable to learn much of the user's personal data. This is contrasted with global differential privacy, a model of differential privacy that incorporates a central aggregator with access to the raw data. Local differential privacy (LDP) is an approach to mitigate the concern of data fusion and analysis techniques used to expose individuals to attacks and disclosures. LDP is a well-known privacy model for distributed architectures that aims to provide privacy guarantees for each user while collecting and analyzing data, protecting from privacy leaks for the client and server. LDP has been widely adopted to alleviate contemporary privacy concerns in the era of big data. History The randomized response survey technique proposed by Stanley L. Warner in 1965 is frequen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Privacy
Differential privacy (DP) is a mathematically rigorous framework for releasing statistical information about datasets while protecting the privacy of individual data subjects. It enables a data holder to share aggregate patterns of the group while limiting information that is leaked about specific individuals. This is done by injecting carefully calibrated noise into statistical computations such that the utility of the statistic is preserved while provably limiting what can be inferred about any individual in the dataset. Another way to describe differential privacy is as a constraint on the algorithms used to publish aggregate information about a statistical database which limits the disclosure of private information of records in the database. For example, differentially private algorithms are used by some government agencies to publish demographic information or other statistical aggregates while ensuring confidentiality of survey responses, and by companies to collect informa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE