HOME





Killing Horizon
In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hypersurface defined by the vanishing of the norm of a Killing vector field (both are named after Wilhelm Killing). It can also be defined as a null hypersurface generated by a Killing vector, which in turn is null at that surface. After Hawking showed that quantum field theory in curved spacetime (without reference to the Einstein field equations) predicted that a black hole formed by collapse will emit thermal radiation, it became clear that there is an unexpected connection between spacetime geometry (Killing horizons) and thermal effects for quantum fields. In particular, there is a very general relationship between thermal radiation and spacetimes that admit a one-parameter group of isometries possessing a bifurcate Killing horizon, wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." It is one of the most fundamental scientific disciplines. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minkowski Space-time
Minkowski, Mińkowski or Minkovski (Slavic feminine: Minkowska, Mińkowska or Minkovskaya; plural: Minkowscy, Mińkowscy; , ) is a surname of Polish origin. It may refer to: * :pl:Minkowski (herb szlachecki), Minkowski or Mińkowski, a coat of arms of Polish nobility *Alyona Minkovski (born 1986), Russian-American correspondent and presenter * Eugène Minkowski (1885–1972), French psychiatrist * Hermann Minkowski (1864–1909) Russian-born German mathematician and physicist, known for: ** Minkowski addition ** Minkowski–Bouligand dimension ** Minkowski diagram ** Minkowski distance ** Minkowski functional ** Minkowski inequality ** Minkowski space *** Null vector (Minkowski space) ** Minkowski plane ** Minkowski's theorem ** Minkowski's question mark function ** Abraham–Minkowski controversy ** Hasse–Minkowski theorem ** Separating axis theorem, Minkowski separation theorem ** Smith–Minkowski–Siegel mass formula *Christopher Minkowski (born 1953), American Indologist *Kh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


De Sitter Space
In mathematical physics, ''n''-dimensional de Sitter space (often denoted dS''n'') is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an ''n''-sphere (with its canonical Riemannian metric). The main application of de Sitter space is its use in general relativity, where it serves as one of the simplest mathematical models of the universe consistent with the observed accelerating expansion of the universe. More specifically, de Sitter space is the maximally symmetric vacuum solution of Einstein's field equations in which the cosmological constant \Lambda is positive (corresponding to a positive vacuum energy density and negative pressure). De Sitter space and anti-de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked closely together in Le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surface Gravity
The surface gravity, ''g'', of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass. For objects where the surface is deep in the atmosphere and the radius not known, the surface gravity is given at the 1 bar pressure level in the atmosphere. Surface gravity is measured in units of acceleration, which, in the SI system, are meters per second squared. It may also be expressed as a multiple of the Earth's standard surface gravity, which is equal to In astrophysics, the surface gravity may be expressed as , which is obtained by first expressing the gravity in cgs units, where the unit of acceleration and surface gravity is centimeters per second squared (cm/s2), and then t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Killing Vector
In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a pseudo-Riemannian manifold that preserves the metric tensor. Killing vector fields are the infinitesimal generators of isometries; that is, flows generated by Killing vector fields are continuous isometries of the manifold. This means that the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the ''Killing vector'' will not distort distances on the object. Definition Specifically, a vector field X is a Killing vector field if the Lie derivative with respect to X of the metric tensor g vanishes: : \mathcal_ g = 0 \,. In terms of the Levi-Civita connection, this is : g\left(\nabla_Y X, Z\right) + g\left(Y, \nabla_Z X\right) = 0 for all vectors Y and . In local coordinates, this amounts to the Killing equation : \nabla_\mu X_\nu + \nabla_ X_\mu = 0 \,. This condition is expressed in covariant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ergosphere
file:Kerr surfaces.svg, 300px, At the ergospheres (shown here in violet for the outer and red for the inner one), the temporal metric coefficient ''gtt'' becomes negative, i.e., acts like a purely spatial metric component. Consequently, timelike or lightlike worldlines within this region must co-rotate with the inner mass. Kerr–Newman metric#Alternative .28Kerr.E2.80.93Schild.29 formulation, Cartesian projection, equatorial perspective. In astrophysics, the ergosphere is a region located just outside a rotating black hole, between its event horizon and a further external surface predicted by the metric that describes these objects. Its name was proposed by Remo Ruffini and John Archibald Wheeler during the Les Houches lectures in 1971 and is derived . It received this name because it is theoretically possible to extract energy and mass from this region. The ergosphere touches the event horizon at the poles of a rotating black hole and extends to a greater radius at the equator ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kerr–Newman Metric
The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric (which describes an uncharged, rotating mass) by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity. As an electrovacuum solution, it only includes those charges associated with the magnetic field; it does not include any free electric charges. Because observed astronomical objects do not possess an appreciable net electric charge (the magnetic fields of stars arise through other processes), the Kerr–Newman metric is primarily of theoretical interest. The model lacks description of infalling baryonic matter, light ( null dusts) or dark matter, and thus provides an incomplete description of stellar mass black holes and active galactic nuclei. The solutio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lorentz Boost
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz. The most common form of the transformation, parametrized by the real constant v, representing a velocity confined to the -direction, is expressed as \begin t' &= \gamma \left( t - \frac \right) \\ x' &= \gamma \left( x - v t \right)\\ y' &= y \\ z' &= z \end where and are the coordinates of an event in two frames with the spatial origins coinciding at , where the primed frame is seen from the unprimed frame as moving with speed along the -axis, where is the speed of light, and \gamma = \frac is the Lorentz factor. When speed is much smaller than , the Lorentz factor is negligibly different from 1, but a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hawking Radiation
Hawking radiation is black-body radiation released outside a black hole's event horizon due to quantum effects according to a model developed by Stephen Hawking in 1974. The radiation was not predicted by previous models which assumed that once electromagnetic radiation is inside the event horizon, it cannot escape. Hawking radiation is predicted to be extremely faint and is many orders of magnitude below the current best telescopes' detecting ability. Hawking radiation would reduce the mass and rotational energy of black holes and consequently cause black hole evaporation. Because of this, black holes that do not gain mass through other means are expected to shrink and ultimately vanish. For all except the smallest black holes, this happens extremely slowly. The radiation temperature, called Hawking temperature, is inversely proportional to the black hole's mass, so micro black holes are predicted to be larger emitters of radiation than larger black holes and should dissipat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General theory of relativity, relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time in physics, time, or four-dimensional spacetime. In particular, the ''curvature of spacetime'' is directly related to the energy and momentum of whatever is present, including matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations. Newton's law of universal gravitation, which describes gravity in classical mechanics, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Field Theory In Curved Spacetime
In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multigraviton pair production), or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes. Overview Ordinary quantum field theories, which form the basis of standard model, are defined in flat Minkowski space, which is an excellent approximation when it comes to describing the behavior of microscopic particles in weak gravitational fields like those found on Earth. In order to describe situations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stephen Hawking
Stephen William Hawking (8January 194214March 2018) was an English theoretical physics, theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between 1979 and 2009, he was the Lucasian Professor of Mathematics at Cambridge, widely viewed as one of the most prestigious academic posts in the world. Hawking was born in Oxford into a family of physicians. In October 1959, at the age of 17, he began his university education at University College, Oxford, where he received a First Class Honours, first-class Honours degree, BA degree in physics. In October 1962, he began his graduate work at Trinity Hall, Cambridge, where, in March 1966, he obtained his PhD in applied mathematics and theoretical physics, specialising in general relativity and cosmology. In 1963, at age 21, Hawking was diagnosed with an early-onset slow-progressing form of motor neurone disease that gradually, over decades, pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]