HOME



picture info

K-medoids
-medoids is a classical partitioning technique of clustering that splits the data set of objects into clusters, where the number of clusters assumed known ''a priori'' (which implies that the programmer must specify k before the execution of a -medoids algorithm). The "goodness" of the given value of can be assessed with methods such as the silhouette method. The name of the clustering method was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. The medoid of a cluster is defined as the object in the cluster whose sum (and, equivalently, the average) of dissimilarities to all the objects in the cluster is minimal, that is, it is a most centrally located point in the cluster. Unlike certain objects used by other algorithms, the medoid is an actual point in the cluster. Algorithms In general, the -medoids problem is NP-hard to solve exactly. As such, multiple heuristics to optimize this problem exist. Partitioning Arou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K-means
''k''-means clustering is a method of vector quantization, originally from signal processing, that aims to partition of a set, partition ''n'' observations into ''k'' clusters in which each observation belongs to the cluster (statistics), cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. ''k''-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians clustering, ''k''-medians and k-medoids, ''k''-medoids. The problem is computationally difficult (NP-hardness, NP-hard); however, efficient heuristic algorithms converge quickly to a local optimum. These are usually similar to the ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




ELKI
ELKI (''Environment for Developing KDD-Applications Supported by Index-Structures'') is a data mining (KDD, knowledge discovery in databases) software framework developed for use in research and teaching. It was originally created by the database systems research unit at the Ludwig Maximilian University of Munich, Germany, led by Professor Hans-Peter Kriegel. The project has continued at the Technical University of Dortmund, Germany. It aims at allowing the development and evaluation of advanced data mining algorithms and their interaction with database index structures. Description The ELKI framework is written in Java and built around a modular architecture. Most currently included algorithms perform clustering, outlier detection, and database indexes. The object-oriented architecture allows the combination of arbitrary algorithms, data types, distance functions, indexes, and evaluation measures. The Java just-in-time compiler optimizes all combinations to a simila ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Medoid
Medoids are representative objects of a data set or a cluster within a data set whose sum of dissimilarities to all the objects in the cluster is minimal. Medoids are similar in concept to means or centroids, but medoids are always restricted to be members of the data set. Medoids are most commonly used on data when a mean or centroid cannot be defined, such as graphs. They are also used in contexts where the centroid is not representative of the dataset like in images, 3-D trajectories and gene expression (where while the data is sparse the medoid need not be). These are also of interest while wanting to find a representative using some distance other than squared euclidean distance (for instance in movie-ratings). For some data sets there may be more than one medoid, as with medians. A common application of the medoid is the k-medoids clustering algorithm, which is similar to the k-means algorithm but works when a mean or centroid is not definable. This algorithm basically work ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


K-Medoids Clustering
-medoids is a classical partitioning technique of clustering that splits the data set of objects into clusters, where the number of clusters assumed known ''a priori'' (which implies that the programmer must specify k before the execution of a -medoids algorithm). The "goodness" of the given value of can be assessed with methods such as the silhouette method. The name of the clustering method was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. The medoid of a cluster is defined as the object in the cluster whose sum (and, equivalently, the average) of dissimilarities to all the objects in the cluster is minimal, that is, it is a most centrally located point in the cluster. Unlike certain objects used by other algorithms, the medoid is an actual point in the cluster. Algorithms In general, the -medoids problem is NP-hard to solve exactly. As such, multiple heuristics to optimize this problem exist. Partitioning Aroun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Clustering
Cluster analysis or clustering is the data analyzing technique in which task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Cluster analysis refers to a family of algorithms and tasks rather than one specific algorithm. It can be achieved by various algorithms that differ significantly in their understanding of what constitutes a cluster and how to efficiently find them. Popular notions of clusters include groups with small distances between cluster members, dense areas of the data space, intervals or particular statistical distributions. Clustering ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Medoids
Medoids are representative objects of a data set or a cluster within a data set whose sum of dissimilarities to all the objects in the cluster is minimal. Medoids are similar in concept to means or centroids, but medoids are always restricted to be members of the data set. Medoids are most commonly used on data when a mean or centroid cannot be defined, such as graphs. They are also used in contexts where the centroid is not representative of the dataset like in images, 3-D trajectories and gene expression (where while the data is sparse the medoid need not be). These are also of interest while wanting to find a representative using some distance other than squared euclidean distance (for instance in movie-ratings). For some data sets there may be more than one medoid, as with medians. A common application of the medoid is the k-medoids clustering algorithm, which is similar to the k-means algorithm but works when a mean or centroid is not definable. This algorithm basically work ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Silhouette (clustering)
Silhouette is a method of interpretation and validation of consistency within Cluster analysis, clusters of data. The technique provides a succinct graphical representation of how well each object has been classified. It was proposed by Belgian statistician Peter Rousseeuw in 1987. The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation). The silhouette ranges from −1 to +1, where a high value indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. If most objects have a high value, then the clustering configuration is appropriate. If many points have a low or negative value, then the clustering configuration may have too many or too few clusters. A clustering with an average silhouette width of over 0.7 is considered to be "strong", a value over 0.5 "reasonable" and over 0.25 "weak", but with increasing dimensionality of the data, it becomes difficult t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rust (programming Language)
Rust is a General-purpose programming language, general-purpose programming language emphasizing Computer performance, performance, type safety, and Concurrency (computer science), concurrency. It enforces memory safety, meaning that all Reference (computer science), references point to valid memory. It does so without a conventional Garbage collection (computer science), garbage collector; instead, memory safety errors and data races are prevented by the "borrow checker", which tracks the object lifetime of references Compiler, at compile time. Rust does not enforce a programming paradigm, but was influenced by ideas from functional programming, including Immutable object, immutability, higher-order functions, algebraic data types, and pattern matching. It also supports object-oriented programming via structs, Enumerated type, enums, traits, and methods. It is popular for systems programming. Software developer Graydon Hoare created Rust as a personal project while working at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RapidMiner
RapidMiner is a data science platform that analyses the collective impact of an organization's data. It was acquired by Altair Engineering in September 2022. History RapidMiner, formerly known as YALE (Yet Another Learning Environment), was developed by Ralf Klinkenberg, Ingo Mierswa, and Simon Fischer in 2001 at the Artificial Intelligence Unit of the Technical University of Dortmund. Starting in 2006, its development was driven by Rapid-I, a company founded by Ingo Mierswa and Ralf Klinkenberg in the same year. In 2013, the company rebranded from Rapid-I to RapidMiner. Description RapidMiner uses a client/server model with the server offered either on-premises or in public or private cloud infrastructures. RapidMiner provides data mining and machine learning procedures including: Extract, transform, load, data loading and transformation (ETL), data preprocessing and visualization, predictive analytics and statistical modeling, evaluation, and deployment. RapidMiner is written ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

R (programming Language)
R is a programming language for statistical computing and Data and information visualization, data visualization. It has been widely adopted in the fields of data mining, bioinformatics, data analysis, and data science. The core R language is extended by a large number of R package, software packages, which contain Reusability, reusable code, documentation, and sample data. Some of the most popular R packages are in the tidyverse collection, which enhances functionality for visualizing, transforming, and modelling data, as well as improves the ease of programming (according to the authors and users). R is free and open-source software distributed under the GNU General Public License. The language is implemented primarily in C (programming language), C, Fortran, and Self-hosting (compilers), R itself. Preprocessor, Precompiled executables are available for the major operating systems (including Linux, MacOS, and Microsoft Windows). Its core is an interpreted language with a na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Python (programming Language)
Python is a high-level programming language, high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Python is type system#DYNAMIC, dynamically type-checked and garbage collection (computer science), garbage-collected. It supports multiple programming paradigms, including structured programming, structured (particularly procedural programming, procedural), object-oriented and functional programming. It is often described as a "batteries included" language due to its comprehensive standard library. Guido van Rossum began working on Python in the late 1980s as a successor to the ABC (programming language), ABC programming language, and he first released it in 1991 as Python 0.9.0. Python 2.0 was released in 2000. Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last release of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


KNIME
KNIME (), the Konstanz Information Miner, is a data analytics, reporting and integrating platform. KNIME integrates various components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept. A graphical user interface and use of Java Database Connectivity (JDBC) allows assembly of nodes blending different data sources, including preprocessing ( extract, transform, load (ETL)), for modeling, data analysis and visualization with minimal, or no, programming. It is free and open-source software released under a GNU General Public License. Since 2006, KNIME has been used in pharmaceutical research, and in other areas including customer relationship management (CRM) and data analysis, business intelligence, text mining and financial data analysis. Recently, attempts were made to use KNIME as robotic process automation (RPA) tool. KNIME's headquarters are based in Zurich, with other offices in Konstanz, Berlin, and Austin (U ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]