HOME





Geometric Algebra (book)
''Geometric Algebra'' is a book written by Emil Artin and published by Interscience Publishers, New York, in 1957. It was republished in 1988 in the Wiley Classics series (). In 1962 ''Algèbre Géométrique'', a translation into French by Michel Lazard, was published by Gauthier-Villars, and reprinted in 1996. () In 1968 a translation into Italian was published in Milan by Feltrinelli. In 1969 a translation into Russian was published in Moscow by Nauka Long anticipated as the sequel to ''Moderne Algebra'' (1930), which Bartel van der Waerden published as his version of notes taken in a course with Artin, ''Geometric Algebra'' is a research monograph suitable for graduate students studying mathematics. From the Preface: :Linear algebra, topology, differential and algebraic geometry are the indispensable tools of the mathematician of our time. It is frequently desirable to devise a course of geometric nature which is distinct from these great lines of thought and which can be pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrians, Austrian mathematician of Armenians, Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. Along with Emmy Noether, he is considered the founder of modern abstract algebra. Early life and education Parents Emil Artin was born in Vienna to parents Emma Maria, née Laura (stage name Clarus), a soubrette on the operetta stages of Austria and Germany, and Emil Hadochadus Maria Artin, Austrian-born of mixed Austrians, Austrian and Armenian people, Armenian descent. His Armenian last name was Artinian which was shortened to Artin. Several documents, including Emil's birth certificate, list the father's occupation as "opera singer" though others list it as "art dealer." It see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skew Field
In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element usually denoted , such that . So, (right) ''division'' may be defined as , but this notation is avoided, as one may have . A commutative division ring is a field. Wedderburn's little theorem asserts that all finite division rings are commutative and therefore finite fields. Historically, division rings were sometimes referred to as fields, while fields were called "commutative fields". In some languages, such as French, the word equivalent to "field" ("corps") is used for both commutative and noncommutative cases, and the distinction between the two cases is made by adding qualificatives such as "corps commutatif" (commutative field) or "corps gauche" (skew field). All division rings are simple. That is, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invariant Subgroup
Invariant and invariance may refer to: Computer science * Invariant (computer science), an expression whose value doesn't change during program execution ** Loop invariant, a property of a program loop that is true before (and after) each iteration * A data type in method overriding that is neither covariant nor contravariant * Class invariant, an invariant used to constrain objects of a class Physics, mathematics, and statistics * Invariant (mathematics), a property of a mathematical object that is not changed by a specific operation or transformation ** Rotational invariance, the property of function whose value does not change when arbitrary rotations are applied to its argument ** Scale invariance, a property of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor ** Topological invariant * Invariant (physics), something does not change under a transformation, such as from one reference frame to another * Invaria ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Translation (geometry)
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same Distance geometry, distance in a given direction (geometry), direction. A translation can also be interpreted as the addition of a constant vector space, vector to every point, or as shifting the Origin (mathematics), origin of the coordinate system. In a Euclidean space, any translation is an isometry. As a function If \mathbf is a fixed vector, known as the ''translation vector'', and \mathbf is the initial position of some object, then the translation function T_ will work as T_(\mathbf)=\mathbf+\mathbf. If T is a translation, then the image (mathematics), image of a subset A under the function (mathematics), function T is the translate of A by T . The translate of A by T_ is often written as A+\mathbf . Application in classical physics In classical physics, translational motion is movement that changes the Position (geometry), positio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fixed Point (mathematics)
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation (mathematics), transformation. Specifically, for function (mathematics), functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set. Fixed point of a function Formally, is a fixed point of a function if belongs to both the domain of a function, domain and the codomain of , and . In particular, cannot have any fixed point if its domain is disjoint from its codomain. If is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point corresponds to an intersection of the curve with the line , cf. picture. For example, if is defined on the real numbers by f(x) = x^2 - 3 x + 4, then 2 is a fixed point of , because . Not all functions have fixed points: for example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Transformation
In Euclidean geometry, an affine transformation or affinity (from the Latin, '' affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. If is the point set of an affine space, then every affine transformation on can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Incidence (geometry)
In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point ''lies on'' a line" or "a line is ''contained in'' a plane" are used. The most basic incidence relation is that between a point, , and a line, , sometimes denoted . If ''P'' and ''l'' are incident, , the pair is called a ''flag''. There are many expressions used in common language to describe incidence (for example, a line ''passes through'' a point, a point ''lies in'' a plane, etc.) but the term "incidence" is preferred because it does not have the additional connotations that these other terms have, and it can be used in a symmetric manner. Statements such as "line intersects line " are also statements about incidence relations, but in this case, it is because this is a shorthand way of saying that "there exists a point that is incident with both line and line ". When one type of object can be thought of as a set of the other type of object (''vi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Collinear
In geometry, collinearity of a set of Point (geometry), points is the property of their lying on a single Line (geometry), line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row". Points on a line In any geometry, the set of points on a line are said to be collinear. In Euclidean geometry this relation is intuitively visualized by points lying in a row on a "straight line". However, in most geometries (including Euclidean) a Line (geometry), line is typically a Primitive notion, primitive (undefined) object type, so such visualizations will not necessarily be appropriate. A Mathematical model, model for the geometry offers an interpretation of how the points, lines and other object types relate to one another and a notion such as collinearity must be interpreted within the context of that model. For instance, in spherical g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parallel Lines
In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. '' Parallel curves'' are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called ''skew lines''. Line segments and Euclidean vectors are parallel if they have the same direction or opposite direction (not necessarily the same length). Parallel lines are the subject of Euclid's parallel postulate. Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry, lines can have analogous properties that are referred to as parallelism. Symbol The parallel symbol is \parallel. For example, AB \par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]