Exportation (logic)
Exportation is a valid rule of replacement in propositional logic. The rule allows conditional statements having conjunctive antecedents to be replaced by statements having conditional consequents and vice versa in logical proofs. It is the rule that: :((P \land Q) \to R) \Leftrightarrow (P \to (Q \to R)) Where "\Leftrightarrow" is a metalogical symbol representing "can be replaced in a proof with." In strict terminology, ((P \land Q) \to R) \Rightarrow (P \to (Q \to R)) is the law of exportation, for it "exports" a proposition from the antecedent of (P \land Q) \to R to its consequent. Its converse, the law of importation, (P \to (Q \to R))\Rightarrow ((P \land Q) \to R) , "imports" a proposition from the consequent of P \to (Q \to R) to its antecedent. Formal notation The ''exportation'' rule may be written in sequent notation: :((P \land Q) \to R) \dashv\vdash (P \to (Q \to R)) where \dashv\vdash is a metalogical symbol meaning that (P \to (Q \to R)) is a synta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rule Of Replacement
In logic, a rule of replacement is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a whole logical expression, a rule of replacement may be applied to only a particular segment. Within the context of a logical proof, logically equivalent expressions may replace each other. Rules of replacement are used in propositional logic to manipulate propositions. Common rules of replacement include de Morgan's laws, commutation, association, distribution, double negation, transposition, material implication, logical equivalence, exportation, and tautology. Table: Rules of Replacement The rules above can be summed up in the following table.Kenneth H. Rosen: ''Discrete Mathematics and its Applications'', Fifth Edition, p. 58. The " Tauto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inference Rule
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the logical structure of valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as ''modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argument forms involving logi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curry–Howard Correspondence
In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs. It is also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation. It is a generalization of a syntactic analogy between systems of formal logic and computational calculi that was first discovered by the American mathematician Haskell Curry and the logician William Alvin Howard. It is the link between logic and computation that is usually attributed to Curry and Howard, although the idea is related to the operational interpretation of intuitionistic logic given in various formulations by L. E. J. Brouwer, Arend Heyting and Andrey Kolmogorov (see Brouwer–Heyting–Kolmogorov interpretation) and Stephen Kleene (see Realizability). The relationship has been extended to include category theory as the three-way Curry–Howard–Lambe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Currying
In mathematics and computer science, currying is the technique of translating a function that takes multiple arguments into a sequence of families of functions, each taking a single argument. In the prototypical example, one begins with a function f:(X\times Y)\to Z that takes two arguments, one from X and one from Y, and produces objects in Z. The curried form of this function treats the first argument as a parameter, so as to create a family of functions f_x :Y\to Z. The family is arranged so that for each object x in X, there is exactly one function f_x. In this example, \mbox itself becomes a function that takes f as an argument, and returns a function that maps each x to f_x. The proper notation for expressing this is verbose. The function f belongs to the set of functions (X\times Y)\to Z. Meanwhile, f_x belongs to the set of functions Y\to Z. Thus, something that maps x to f_x will be of the type X\to \to Z With this notation, \mbox is a function that takes objects from ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associativity
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replacement for well-formed formula, expressions in Formal proof, logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the Operation (mathematics), operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjunction (logic)
In logic, mathematics and linguistics, ''and'' (\wedge) is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdot in which \wedge is the most modern and widely used. The ''and'' of a set of operands is true if and only if ''all'' of its operands are true, i.e., A \land B is true if and only if A is true and B is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English " and"; * In programming languages, the short-circuit and control structure; * In set theory, intersection. * In lattice theory, logical conjunction ( greatest lower bound). Notation And is usually denoted by an infix operator: in mathematics and logic, it is denoted by a "wedge" \wedge (Unicode ), \& or \times; in electronics, \cdot; ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associative Property
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replacement for well-formed formula, expressions in Formal proof, logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the Operation (mathematics), operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
De Morgan's Law
In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation. The rules can be expressed in English as: * The negation of "A and B" is the same as "not A or not B". * The negation of "A or B" is the same as "not A and not B". or * The complement of the union of two sets is the same as the intersection of their complements * The complement of the intersection of two sets is the same as the union of their complements or * not (A or B) = (not A) and (not B) * not (A and B) = (not A) or (not B) where "A or B" is an " inclusive or" meaning ''at least'' one of A or B rather than an "exclusive or" that means ''exactly'' one of A or B. Another form of De Morgan's law is the following as see ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Material Implication (rule Of Inference)
A material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geological origin or biological function. Materials science is the study of materials, their properties and their applications. Raw materials can be processed in different ways to influence their properties, by purification, shaping or the introduction of other materials. New materials can be produced from raw materials by synthesis. In industry, materials are inputs to manufacturing processes to produce products or more complex materials, and the nature and quantity of materials used may form part of the calculation for the cost of a product or delivery under contract, such as where contract costs are calculated on a " time and materials" basis. Historical elements Materials chart the history of humanity. The system of the three prehist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classical Logic
Classical logic (or standard logic) or Frege–Russell logic is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class shares characteristic properties: Gabbay, Dov, (1994). 'Classical vs non-classical logic'. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, (Eds), ''Handbook of Logic in Artificial Intelligence and Logic Programming'', volume 2, chapter 2.6. Oxford University Press. # Law of excluded middle and double negation elimination # Law of noncontradiction, and the principle of explosion # Monotonicity of entailment and idempotency of entailment # Commutativity of conjunction # De Morgan duality: every logical operator is dual to another While not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics. Shapiro, Stewart (2000). Classical Logic. In St ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical System
A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms. In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Concepts A formal system has the following: * Formal language, which is a set of well-formed formulas, which are strings of symbols from an alphabet, formed by a formal grammar (consisting of production rules or formation rules). * Deductive system, deductive apparatus, or proof system, which has rules of inference that take axioms and infers theorems, both of which are part of the formal language. A formal system is said to be recursive (i.e. effective) or recursively enumerable if the set of axioms and the set of inference rules are decidable set ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tautology (logic)
In mathematical logic, a tautology (from ) is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be logically c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |