Conjunction (logic)
In logic, mathematics and linguistics, ''and'' (\wedge) is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdot in which \wedge is the most modern and widely used. The ''and'' of a set of operands is true if and only if ''all'' of its operands are true, i.e., A \land B is true if and only if A is true and B is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English " and"; * In programming languages, the short-circuit and control structure; * In set theory, intersection. * In lattice theory, logical conjunction ( greatest lower bound). Notation And is usually denoted by an infix operator: in mathematics and logic, it is denoted by a "wedge" \wedge (Unicode ), \& or \times; in electronics, \cdot; ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Venn 0000 0001
Venn is a surname and a given name. It may refer to: Given name * Venn Eyre (died 1777), Archdeacon of Carlisle, Cumbria, England * Venn Pilcher (1879–1961), Anglican bishop, writer, and translator of hymns * Venn Young (1929–1993), New Zealand politician Surname * Albert Venn (1867–1908), American lacrosse player * Anne Venn (1620s–1654), English religious radical and diarist * Blair Venn, Australian actor * Charles Venn (born 1973), British actor * Harry Venn (1844–1908), Australian politician * Henry Venn (Church Missionary Society) (1796-1873), secretary of the Church Missionary Society, grandson of Henry Venn * Henry Venn (Clapham Sect) (1725–1797), English evangelical minister * Horace Venn (1892–1953), English cricketer * John Venn John Venn, Fellow of the Royal Society, FRS, Fellow of the Society of Antiquaries of London, FSA (4 August 1834 – 4 April 1923) was an English mathematician, logician and philosopher noted for introducing Venn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jan Łukasiewicz
Jan Łukasiewicz (; 21 December 1878 – 13 February 1956) was a Polish logician and philosopher who is best known for Polish notation and Łukasiewicz logic. His work centred on philosophical logic, mathematical logic and history of logic. He thought innovatively about traditional propositional logic, the principle of non-contradiction and the law of excluded middle, offering one of the earliest systems of many-valued logic. Contemporary research on Aristotelian logic also builds on innovative works by Łukasiewicz, which applied methods from modern logic to the formalization of Aristotle's syllogistic. The Łukasiewicz approach was reinvigorated in the early 1970s in a series of papers by John Corcoran and Timothy Smiley that inform modern translations of '' Prior Analytics'' by Robin Smith in 1989 and Gisela Striker in 2009. Łukasiewicz is regarded as one of the most important historians of logic. Life He was born in Lwów in Austria-Hungary (now Lviv, Ukr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truth Table
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid. A truth table has one column for each input variable (for example, A and B), and one final column showing all of the possible results of the logical operation that the table represents (for example, A XOR B). Each row of the truth table contains one possible configuration of the input variables (for instance, A=true, B=false), and the result of the operation for those values. A proposition's truth table is a graphical representation of its truth function. The truth function can be more useful for mathema ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Variadic Logical AND
In computer science, an operator or function is variadic if it can take a varying number of arguments; that is, if its arity is not fixed. For specific articles, see: * Variadic function In mathematics and in computer programming, a variadic function is a function of indefinite arity, i.e., one which accepts a variable number of arguments. Support for variadic functions differs widely among programming languages. The term ''var ... * Variadic macro in the C preprocessor * Variadic template Programming language theory {{Comp-sci-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arity
In logic, mathematics, and computer science, arity () is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and philosophy, arity may also be called adicity and degree. In linguistics, it is usually named valency. Examples In general, functions or operators with a given arity follow the naming conventions of ''n''-based numeral systems, such as binary and hexadecimal. A Latin prefix is combined with the -ary suffix. For example: * A nullary function takes no arguments. ** Example: f()=2 * A unary function takes one argument. ** Example: f(x)=2x * A binary function takes two arguments. ** Example: f(x,y)=2xy * A ternary function takes three arguments. ** Example: f(x,y,z)=2xyz * An ''n''-ary function takes ''n'' arguments. ** Example: f(x_1, x_2, \ldots, x_n)=2\prod_^n x_i Nullary A constant can be treated as the output of an operation o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vacuous Truth
In mathematics and logic, a vacuous truth is a conditional or universal statement (a universal statement that can be converted to a conditional statement) that is true because the antecedent cannot be satisfied. It is sometimes said that a statement is vacuously true because it does not really say anything. For example, the statement "all cell phones in the room are turned off" will be true when no cell phones are present in the room. In this case, the statement "all cell phones in the room are turned ''on''" would also be vacuously true, as would the conjunction of the two: "all cell phones in the room are turned on ''and'' turned off", which would otherwise be incoherent and false. More formally, a relatively well-defined usage refers to a conditional statement (or a universal conditional statement) with a false antecedent. One example of such a statement is "if Tokyo is in Spain, then the Eiffel Tower is in Bolivia". Such statements are considered vacuous truths becau ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Identity Element
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is used in algebraic structures such as group (mathematics), groups and ring (mathematics), rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with. Definitions Let be a set equipped with a binary operation ∗. Then an element of is called a if for all in , and a if for all in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an Additive identity, (often denoted as 0) and an identity with respect to m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proposition
A proposition is a statement that can be either true or false. It is a central concept in the philosophy of language, semantics, logic, and related fields. Propositions are the object s denoted by declarative sentences; for example, "The sky is blue" expresses the proposition that the sky is blue. Unlike sentences, propositions are not linguistic expressions, so the English sentence "Snow is white" and the German "Schnee ist weiß" denote the same proposition. Propositions also serve as the objects of belief and other propositional attitudes, such as when someone believes that the sky is blue. Formally, propositions are often modeled as functions which map a possible world to a truth value. For instance, the proposition that the sky is blue can be modeled as a function which would return the truth value T if given the actual world as input, but would return F if given some alternate world where the sky is green. However, a number of alternative formalizations have be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Value
In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or '' false''). Truth values are used in computing as well as various types of logic. Computing In some programming languages, any expression can be evaluated in a context that expects a Boolean data type. Typically (though this varies by programming language) expressions like the number zero, the empty string, empty lists, and null are treated as false, and strings with content (like "abc"), other numbers, and objects evaluate to true. Sometimes these classes of expressions are called falsy and truthy. For example, in Lisp, nil, the empty list, is treated as false, and all other values are treated as true. In C, the number 0 or 0.0 is false, and all other values are treated as true. In JavaScript, the empty string (""), null, undefined, NaN, +0, −0 and false are someti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Operation
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective \lor can be used to join the two atomic formulas P and Q, rendering the complex formula P \lor Q . Common connectives include negation, disjunction, conjunction, implication, and equivalence. In standard systems of classical logic, these connectives are interpreted as truth functions, though they receive a variety of alternative interpretations in nonclassical logics. Their classical interpretations are similar to the meanings of natural language expressions such as English "not", "or", "and", and "if", but not identical. Discrepancies between natural language connectives and those of classical logic have motivated nonclassical approaches to natural language meaning as well as approaches which pair a cla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classical Logic
Classical logic (or standard logic) or Frege–Russell logic is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class shares characteristic properties: Gabbay, Dov, (1994). 'Classical vs non-classical logic'. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, (Eds), ''Handbook of Logic in Artificial Intelligence and Logic Programming'', volume 2, chapter 2.6. Oxford University Press. # Law of excluded middle and double negation elimination # Law of noncontradiction, and the principle of explosion # Monotonicity of entailment and idempotency of entailment # Commutativity of conjunction # De Morgan duality: every logical operator is dual to another While not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics. Shapiro, Stewart (2000). Classical Logic. In St ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |