HOME





Dwork Conjecture
In mathematics, the Dwork unit root zeta function, named after Bernard Dwork, is the L-function attached to the p-adic Galois representation arising from the p-adic etale cohomology of an algebraic variety defined over a global function field of characteristic ''p''. The Dwork conjecture (1973) states that his unit root zeta function is p-adic meromorphic In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are pole (complex analysis), pole ... everywhere. This conjecture was proved by Wan (2000).. References. {{reflist Zeta and L-functions Conjectures that have been proved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernard Dwork
Bernard Morris Dwork (May 27, 1923 – May 9, 1998) was an American mathematician, known for his application of ''p''-adic analysis to local zeta functions, and in particular for a proof of the first part of the Weil conjectures: the rationality of the zeta-function of a variety over a finite field. The general theme of Dwork's research was ''p''-adic cohomology and ''p''-adic differential equations. He published two papers under the pseudonym Maurizio Boyarsky. Career Dwork received his Ph.D. at Columbia University in 1954 under direction of Emil Artin (his formal advisor was John Tate); Nick Katz was one of his students.. For his proof of the first part of the Weil conjectures, Dwork received (together with Kenkichi Iwasawa) the Cole Prize in 1962.Memorial article
– by

picture info

L-function
In mathematics, an ''L''-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An ''L''-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an ''L''-function via analytic continuation. The Riemann zeta function is an example of an ''L''-function, and one important conjecture involving ''L''-functions is the Riemann hypothesis and its generalization. The theory of ''L''-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory. In it, broad generalisations of the Riemann zeta function and the ''L''-series for a Dirichlet character are constructed, and their general properties, in most cases still out of reach of proof, are set out in a systematic way. Because of the Euler product formula there is a deep connection between ''L''-functions and the theory of prime numbers. The mathematical field that studie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a disc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Representation
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for ''G''-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Examples *Given a field ''K'', the multiplicative group (''Ks'')× of a separable closure of ''K'' is a Galois module for the absolute Galois group. Its second cohomology group is isomorphic to the Brauer group of ''K'' (by Hilbert's theorem 90, its first cohomology group is zero). *If ''X'' is a smooth proper scheme over a field ''K'' then the ℓ-adic cohomology groups of its geometric fibre are Galois modules for the absolute Galois group of ''K''. Ramification theory Let ''K'' be a valued field (with valuation denoted ''v' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is det ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Global Function Field
In mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields: *Algebraic number field: A finite extension of \mathbb *Global function field: The function field of an algebraic curve over a finite field, equivalently, a finite extension of \mathbb_q(T), the field of rational functions in one variable over the finite field with q=p^n elements. An axiomatic characterization of these fields via valuation theory was given by Emil Artin and George Whaples in the 1940s. Formal definitions A ''global field'' is one of the following: ;An algebraic number field An algebraic number field ''F'' is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus ''F'' is a field that contains Q and has finite dimension when considered as a vector space over Q. ;The function field of an algebraic curve over a finite field A function field of a variety is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meromorphic Function
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are poles of the function. The term comes from the Greek ''meros'' ( μέρος), meaning "part". Every meromorphic function on ''D'' can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on ''D'': any pole must coincide with a zero of the denominator. Heuristic description Intuitively, a meromorphic function is a ratio of two well-behaved (holomorphic) functions. Such a function will still be well-behaved, except possibly at the points where the denominator of the fraction is zero. If the denominator has a zero at ''z'' and the numerator does not, then the value of the function will approach infinity; if both parts have a zero at ''z'', then one must compare the multiplicity of these zeros. From an algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Daqing Wan
Daqing Wan (born 1964 in China) is a Chinese mathematician working in the United States. He received his Ph.D. from the University of Washington in Seattle in 1991, under the direction of Neal Koblitz. Since 1997, he has been on the faculty of mathematics at the University of California at Irvine; he has also held visiting positions at the Institute for Advanced Study in Princeton, New Jersey, Pennsylvania State University, the University of Rennes, the Mathematical Sciences Research Institute in Berkeley, California, and the Chinese Academy of Sciences in Beijing. His primary interests include number theory and arithmetic algebraic geometry, particularly zeta functions over finite fields. He is known for his proof of Dwork's conjecture that the p-adic unit root zeta function attached to a family of varieties over a finite field of characteristic p is p-adic meromorphic In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The American Mathematical Society
The ''Journal of the American Mathematical Society'' (''JAMS''), is a quarterly peer-reviewed mathematical journal published by the American Mathematical Society. It was established in January 1988. Abstracting and indexing This journal is abstracted and indexed in:Indexing and archiving notes
2011. American Mathematical Society. * * * * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]