In
mathematics, a global field is one of two type of fields (the other one is
local field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compa ...
) which are characterized using
valuations
Valuation may refer to:
Economics
*Valuation (finance), the determination of the economic value of an asset or liability
**Real estate appraisal, sometimes called ''property valuation'' (especially in British English), the appraisal of land or bui ...
. There are two kinds of global
fields:
*
Algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a ...
: A
finite extension
In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — ...
of
*Global function field: The
function field of an
algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane ...
over a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
, equivalently, a finite extension of
, the field of rational functions in one variable over the finite field with
elements.
An axiomatic characterization of these fields via
valuation theory In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size ...
was given by
Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent.
Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing ...
and George Whaples in the 1940s.
Formal definitions
A ''global field'' is one of the following:
;An algebraic number field
An algebraic number field ''F'' is a finite (and hence
algebraic)
field extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
of the
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s Q. Thus ''F'' is a field that contains Q and has finite
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
when considered as a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
over Q.
;The function field of an algebraic curve over a finite field
A function field of a variety is the set of all rational functions on that variety. On an algebraic curve (i.e. a one-dimensional variety ''V'') over a finite field, we say that a rational function on an open affine subset ''U'' is defined as the ratio of two polynomials in the
affine coordinate ring
In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ide ...
of ''U'', and that a rational function on all of ''V'' consists of such local data which agree on the intersections of open affines. This technically defines the rational functions on ''V'' to be the
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
of the affine coordinate ring of any open affine subset, since all such subsets are dense.
Analogies between the two classes of fields
There are a number of formal similarities between the two kinds of fields. A field of either type has the property that all of its
completions are
locally compact field In algebra, a locally compact field is a topological field whose topology forms a locally compact Hausdorff space.. These kinds of fields were originally introduced in p-adic analysis
In mathematics, ''p''-adic analysis is a branch of number the ...
s (see
local field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compa ...
s). Every field of either type can be realized as the
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
of a
Dedekind domain
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessari ...
in which every non-zero
ideal
Ideal may refer to:
Philosophy
* Ideal (ethics), values that one actively pursues as goals
* Platonic ideal, a philosophical idea of trueness of form, associated with Plato
Mathematics
* Ideal (ring theory), special subsets of a ring considere ...
is of finite index. In each case, one has the ''product formula'' for non-zero elements ''x'':
:
The analogy between the two kinds of fields has been a strong motivating force in
algebraic number theory. The idea of an analogy between number fields and
Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ve ...
s goes back to
Richard Dedekind
Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and
the axiomatic foundations of arithmetic. His ...
and
Heinrich M. Weber in the nineteenth century. The more strict analogy expressed by the 'global field' idea, in which a Riemann surface's aspect as algebraic curve is mapped to curves defined over a finite field, was built up during the 1930s, culminating in the
Riemann hypothesis for curves over finite fields In number theory, the local zeta function (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as
:Z(V, s) = \exp\left(\sum_^\infty \frac (q^)^m\right)
where is a non-singular -dimensional projective algebr ...
settled by
André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was a founding member and the ''de facto'' early leader of the mathematical Bourbaki group. ...
in 1940. The terminology may be due to Weil, who wrote his ''Basic Number Theory'' (1967) in part to work out the parallelism.
It is usually easier to work in the function field case and then try to develop parallel techniques on the number field side. The development of
Arakelov theory In mathematics, Arakelov theory (or Arakelov geometry) is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.
Background
The main motivation behind Arakelov geometry is the ...
and its exploitation by
Gerd Faltings
Gerd Faltings (; born 28 July 1954) is a German mathematician known for his work in arithmetic geometry.
Education
From 1972 to 1978, Faltings studied mathematics and physics at the University of Münster. In 1978 he received his PhD in mathema ...
in his proof of the
Mordell conjecture
Louis Joel Mordell (28 January 1888 – 12 March 1972) was an American-born British mathematician, known for pioneering research in number theory. He was born in Philadelphia, United States, in a Jewish family of Lithuanian extraction.
Educati ...
is a dramatic example. The analogy was also influential in the development of
Iwasawa theory
In number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by (), as part of the theory of cyclotomic fields. In the ...
and the
Main Conjecture. The proof of the
fundamental lemma in the
Langlands program
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic n ...
also made use of techniques that reduced the number field case to the function field case.
Theorems
Hasse–Minkowski theorem
The
Hasse–Minkowski theorem
The Hasse–Minkowski theorem is a fundamental result in number theory which states that two quadratic forms over a number field are equivalent if and only if they are equivalent ''locally at all places'', i.e. equivalent over every completion o ...
is a fundamental result in
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
which states that two
quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example,
:4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong to ...
s over a global field are equivalent if and only if they are equivalent ''locally at all places'', i.e. equivalent over every
completion of the field.
Artin reciprocity law
Artin's reciprocity law implies a description of the
abelianization
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.
The commutator subgroup is important because it is the smallest normal ...
of the absolute
Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
of a global field ''K'' which is based on the
Hasse local–global principle. It can be described in terms of cohomology as follows:
Let ''L''
''v''⁄''K''
''v'' be a
Galois extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base fiel ...
of
local field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compa ...
s with Galois group ''G''. The local reciprocity law describes a canonical isomorphism
:
called the local Artin symbol, the local reciprocity map or the norm residue symbol.
Let ''L''⁄''K'' be a
Galois extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base fiel ...
of global fields and ''C''
''L'' stand for the
idèle class group
of ''L''. The maps ''θ''
''v'' for different places ''v'' of ''K'' can be assembled into a single global symbol map by multiplying the local components of an idèle class. One of the statements of the Artin reciprocity law is that this results in a canonical isomorphism.
Citations
References
*
*
*
J.W.S. Cassels
John William Scott "Ian" Cassels, FRS (11 July 1922 – 27 July 2015) was a British mathematician.
Biography
Cassels was educated at Neville's Cross Council School in Durham and George Heriot's School in Edinburgh. He went on to study at ...
, "Global fields", in J.W.S. Cassels and
A. Frohlich (eds), ''Algebraic number theory'',
Academic Press
Academic Press (AP) is an academic book publisher founded in 1941. It was acquired by Harcourt, Brace & World in 1969. Reed Elsevier bought Harcourt in 2000, and Academic Press is now an imprint of Elsevier.
Academic Press publishes refere ...
, 1973. Chap.II, pp. 45–84.
* J.W.S. Cassels, "Local fields",
Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer.
Cambr ...
, 1986, . P.56.
*
*
{{refend
Field (mathematics)
Algebraic number theory
Algebraic curves