HOME





Delay Slot
In computer architecture, a delay slot is an instruction slot being executed without the effects of a preceding instruction. The most common form is a single arbitrary instruction located immediately after a branch instruction (computer science), instruction on a RISC or Digital signal processor, DSP architecture; this instruction will execute even if the preceding branch is taken. This makes the instruction execute Out-of-order execution, out-of-order compared to its location in the original assembler language code. Modern processor designs generally do not use delay slots, and instead perform ever more complex forms of branch prediction. In these systems, the CPU immediately moves on to what it believes will be the correct side of the branch and thereby eliminates the need for the code to specify some unrelated instruction, which may not always be obvious at compile-time. If the assumption is wrong, and the other side of the branch has to be called, this can introduce a lengthy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MOS 6502
The MOS Technology 6502 (typically pronounced "sixty-five-oh-two" or "six-five-oh-two") William Mensch and the moderator both pronounce the 6502 microprocessor as ''"sixty-five-oh-two"''. is an 8-bit microprocessor that was designed by a small team led by Chuck Peddle for MOS Technology. The design team had formerly worked at Motorola on the Motorola 6800 project; the 6502 is essentially a simplified, less expensive and faster version of that design. When it was introduced in 1975, the 6502 was the least expensive microprocessor on the market by a considerable margin. It initially sold for less than one-sixth the cost of competing designs from larger companies, such as the 6800 or Intel 8080. Its introduction caused rapid decreases in pricing across the entire processor market. Along with the Zilog Z80, it sparked a series of projects that resulted in the home computer revolution of the early 1980s. Home video game consoles and home computers of the 1970s through the early ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PA-RISC
Precision Architecture reduced instruction set computer, RISC (PA-RISC) or Hewlett Packard Precision Architecture (HP/PA or simply HPPA), is a computer, general purpose computer instruction set architecture (ISA) developed by Hewlett-Packard from the 1980s until the 2000s. The architecture was introduced on 26 February 1986, when the HP 3000, HP 3000 Series 930 and HP 9000, HP 9000 Model 840 computers were launched featuring the first implementation, the TS1. HP stopped selling PA-RISC-based HP 9000 systems at the end of 2008 but supported servers running PA-RISC chips until 2013. PA-RISC was succeeded by the Itanium (originally IA-64) ISA, jointly developed by HP and Intel. History In the late 1980s, HP was building four series of computers, all based on Complex instruction set computer, CISC CPUs. One line was the IBM PC compatible Intel i286-based Vectra Series, started in 1986. All others were non-Intel systems. One of them was the HP Series 300 of Motorola 68000-based wor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MIPS Architecture
MIPS (Microprocessor without Interlocked Pipelined Stages) is a family of reduced instruction set computer (RISC) instruction set architectures (ISA)Price, Charles (September 1995). ''MIPS IV Instruction Set'' (Revision 3.2), MIPS Technologies, Inc. developed by MIPS Computer Systems, now MIPS Technologies, based in the United States. There are multiple versions of MIPS, including MIPS I, II, III, IV, and V, as well as five releases of MIPS32/64 (for 32- and 64-bit implementations, respectively). The early MIPS architectures were 32-bit; 64-bit versions were developed later. As of April 2017, the current version of MIPS is MIPS32/64 Release 6. MIPS32/64 primarily differs from MIPS I–V by defining the privileged kernel mode System Control Coprocessor in addition to the user mode architecture. The MIPS architecture has several optional extensions: MIPS-3D, a simple set of floating-point SIMD instructions dedicated to 3D computer graphics; MDMX (MaDMaX), a more extensive i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Branch Target Buffer
In computer architecture, a branch target predictor is the part of a processor that predicts the target, i.e., the address of the instruction that is executed next, of a taken conditional branch or unconditional branch instruction before the target of the branch instruction is computed by the execution unit of the processor. Branch target prediction is not the same as branch prediction, which guesses whether a conditional branch will be taken or not-taken in a binary manner. In more parallel processor designs, as the instruction cache latency grows longer and the fetch width grows wider, branch target extraction becomes a bottleneck. The recurrence is: * Instruction cache fetches block of instructions * Instructions in block are scanned to identify branches * First predicted taken branch is identified * Target of that branch is computed * Instruction fetch restarts at branch target In machines where this recurrence takes two cycles, the machine loses one full cycle of fe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Debugging
In engineering, debugging is the process of finding the Root cause analysis, root cause, workarounds, and possible fixes for bug (engineering), bugs. For software, debugging tactics can involve interactive debugging, control flow analysis, Logfile, log file analysis, monitoring at the application monitoring, application or system monitoring, system level, memory dumps, and profiling (computer programming), profiling. Many Programming language, programming languages and Programming tool, software development tools also offer programs to aid in debugging, known as debuggers. Etymology The term ''bug'', in the sense of defect, dates back at least to 1878 when Thomas Edison wrote "little faults and difficulties" in his inventions as "Bugs". A popular story from the 1940s is from Admiral Grace Hopper. While she was working on a Harvard Mark II, Mark II computer at Harvard University, her associates discovered a moth stuck in a relay that impeded operation and wrote in a log book ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Breakpoint
In software development, a breakpoint is an intentional stopping or pausing place in a computer program, program, put in place for debugging purposes. It is also sometimes simply referred to as a pause. More generally, a breakpoint is a means of acquiring knowledge about a program during its execution. During the Interrupt, interruption, the programmer inspects the test System platform, environment (general-purpose registers, virtual memory, memory, logs, Computer file, files, etc.) to find out whether the program is functioning as expected. In practice, a breakpoint consists of one or more conditions that determine when a program's execution should be interrupted. History Breakpoints were invented for ENIAC, one of the earliest digital computers, by programmer Betty Holberton. In the initial design of ENIAC, program flow was set by plugging cables from one unit to another. To make the program stop at a certain point, a cable was removed, called a ''breakpoint''. Types of bre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Register Renaming
In computer architecture, register renaming is a technique that abstracts logical processor register, registers from physical registers. Every logical register has a set of physical registers associated with it. When a machine language instruction refers to a particular logical register, the processor transposes this name to one specific physical register on the fly. The physical registers are opaque and cannot be referenced directly but only via the canonical names. This technique is used to eliminate false Data dependency, data dependencies arising from the reuse of registers by successive Instruction (computer science), instructions that do not have any real data dependencies between them. The elimination of these false data dependencies reveals more instruction-level parallelism in an instruction stream, which can be exploited by various and complementary techniques such as superscalar and out-of-order execution for better Computer performance, performance. Problem approach ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compiler
In computing, a compiler is a computer program that Translator (computing), translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a lower level language, low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program.Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman - Second Edition, 2007 There are many different types of compilers which produce output in different useful forms. A ''cross-compiler'' produces code for a different Central processing unit, CPU or operating system than the one on which the cross-compiler itself runs. A ''bootstrap compiler'' is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Assembler (computing)
In computing, assembly language (alternatively assembler language or symbolic machine code), often referred to simply as assembly and commonly abbreviated as ASM or asm, is any low-level programming language with a very strong correspondence between the instructions in the language and the architecture's machine code instructions. Assembly language usually has one statement per machine instruction (1:1), but constants, comments, assembler directives, symbolic labels of, e.g., memory locations, registers, and macros are generally also supported. The first assembly code in which a language is used to represent machine code instructions is found in Kathleen and Andrew Donald Booth's 1947 work, ''Coding for A.R.C.''. Assembly code is converted into executable machine code by a utility program referred to as an '' assembler''. The term "assembler" is generally attributed to Wilkes, Wheeler and Gill in their 1951 book ''The Preparation of Programs for an Electronic Digi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Program Counter
The program counter (PC), commonly called the instruction pointer (IP) in Intel x86 and Itanium microprocessors, and sometimes called the instruction address register (IAR), the instruction counter, or just part of the instruction sequencer, is a processor register that indicates where a computer is in its program sequence. Usually, the PC is incremented after fetching an instruction, and holds the memory address of (" points to") the next instruction that would be executed. Processors usually fetch instructions sequentially from memory, but ''control transfer'' instructions change the sequence by placing a new value in the PC. These include branches (sometimes called jumps), subroutine calls, and returns. A transfer that is conditional on the truth of some assertion lets the computer follow a different sequence under different conditions. A branch provides that the next instruction is fetched from elsewhere in memory. A subroutine call not only branches but saves the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hazard (computer Architecture)
In the domain of central processing unit (CPU) design, hazards are problems with the instruction pipeline in CPU microarchitectures when the next instruction cannot execute in the following clock cycle, and can potentially lead to incorrect computation results. Three common types of hazards are data hazards, structural hazards, and control hazards (branching hazards). There are several methods used to deal with hazards, including pipeline stalls/pipeline bubbling, operand forwarding, and in the case of out-of-order execution, the scoreboarding method and the Tomasulo algorithm. Background Instructions in a pipelined processor are performed in several stages, so that at any given time several instructions are being processed in the various stages of the pipeline, such as fetch and execute. There are many different instruction pipeline microarchitectures, and instructions may be executed out-of-order. A hazard occurs when two or more of these simultaneous (possibly out of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]