Red Hypergiant
   HOME

TheInfoList



OR:

Red supergiants (RSGs) are
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s with a
supergiant Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram, with absolute visual magnitudes between about −3 and −8. The temperatures of supergiant stars range ...
luminosity class ( Yerkes class I) and a
stellar classification In astronomy, stellar classification is the classification of stars based on their stellar spectrum, spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a Prism (optics), prism or diffraction gratin ...
K or M. They are the largest stars in the universe in terms of
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
, although they are not the most massive or luminous.
Betelgeuse Betelgeuse is a red supergiant star in the constellation of Orion (constellation), Orion. It is usually the List of brightest stars, tenth-brightest star in the night sky and, after Rigel, the second brightest in its constellation. It i ...
and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first
magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ...
red supergiant stars.


Classification

Stars are classified as supergiants on the basis of their spectral
luminosity class In astronomy, stellar classification is the classification of stars based on their stellar spectrum, spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a Prism (optics), prism or diffraction gratin ...
. This system uses certain diagnostic spectral lines to estimate the
surface gravity The surface gravity, ''g'', of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experi ...
of a star, hence determining its size relative to its mass. Larger stars are more luminous at a given temperature and can now be grouped into bands of differing luminosity. The luminosity differences between stars are most apparent at low temperatures, where giant stars are much brighter than main-sequence stars. Supergiants have the lowest surface gravities and hence are the largest and brightest at a particular temperature. The ''Yerkes'' or ''Morgan-Keenan'' (MK) classification system is almost universal. It groups stars into five main luminosity groups designated by
roman numerals Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, eac ...
: * I
supergiant Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram, with absolute visual magnitudes between about −3 and −8. The temperatures of supergiant stars range ...
; * II
bright giant A giant star has a substantially larger radius and luminosity than a main-sequence (or ''dwarf'') star of the same surface temperature. They lie above the main sequence (luminosity class V in the Yerkes spectral classification) on the Hertzspr ...
; * III
giant In folklore, giants (from Ancient Greek: ''wiktionary:gigas, gigas'', cognate wiktionary:giga-, giga-) are beings of humanoid appearance, but are at times prodigious in size and strength or bear an otherwise notable appearance. The word ''gia ...
; * IV
subgiant A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution ...
; * V
dwarf Dwarf, dwarfs or dwarves may refer to: Common uses *Dwarf (folklore), a supernatural being from Germanic folklore * Dwarf, a human or animal with dwarfism Arts, entertainment, and media Fictional entities * Dwarf (''Dungeons & Dragons''), a sh ...
(
main sequence In astronomy, the main sequence is a classification of stars which appear on plots of stellar color index, color versus absolute magnitude, brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or d ...
). Specific to supergiants, the luminosity class is further divided into normal supergiants of class Ib and brightest supergiants of class Ia. The intermediate class Iab is also used. Exceptionally bright, low surface gravity, stars with strong indications of mass loss may be designated by luminosity class 0 (zero) although this is rarely seen. More often the designation Ia-0 will be used, and more commonly still Ia+. These
hypergiant A hypergiant ( luminosity class 0 or Ia+) is a very rare type of star that has an extremely high luminosity, mass, size and mass loss because of its extreme stellar winds. The term ''hypergiant'' is defined as luminosity class 0 (zero) in the MK ...
spectral classifications are very rarely applied to red supergiants, although the term red hypergiant is sometimes used for the most extended and unstable red supergiants like
VY Canis Majoris VY Canis Majoris (abbreviated to VY CMa) is an extreme oxygen-rich red hypergiant or red supergiant (O-rich RHG or RSG) and pulsating variable star from the Solar System in the slightly southern constellation of Canis Major. It is on ...
and
NML Cygni NML Cygni or V1489 Cygni (abbreviated to NML Cyg or V1489 Cyg) is a M-type star, red hypergiant or red supergiant (RSG) in the constellation Cygnus (constellation), Cygnus. It is possibly one of the List of largest stars, largest known ...
. The "red" part of "red supergiant" refers to the cool temperature. Red supergiants are the coolest supergiants, M-type, and at least some K-type stars although there is no precise cutoff. K-type supergiants are uncommon compared to M-type because they are a short-lived transition stage and somewhat unstable. The K-type stars, especially early or hotter K types, are sometimes described as orange supergiants (e.g.
Zeta Cephei Zeta Cephei (ζ Cep, ζ Cephei) is a red supergiant star, located about 1000 light-years away in the constellation of Cepheus. Zeta Cephei marks the left shoulder of Cepheus, the King of Ethiopia. It is one of the fundamental stars of th ...
), or even as yellow (e.g.
yellow hypergiant A yellow hypergiant (YHG) is a massive star with an extended atmosphere, a spectral class from A to K, and, starting with an initial mass of about 20–60 solar masses, has lost as much as half that mass. They are amongst the most visually lumino ...
HR 5171 HR 5171, also known as V766 Centauri, is a yellow hypergiant in the constellation Centaurus. It is said to be either an extreme red supergiant (RSG) or recent post-red supergiant (Post-RSG) yellow hypergiant (YHG), both of which s ...
Aa).


Properties

Red supergiants are cool and large. They have spectral types of K and M, hence surface temperatures below 4,100  K. They are typically several hundred to over a thousand times the radius of the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
, although size is not the primary factor in a star being designated as a supergiant. A bright cool giant star can easily be larger than a hotter supergiant. For example,
Alpha Herculis Alpha Herculis (α Herculis, abbreviated Alpha Her, α Her), also designated Rasalgethi and 64 Herculis, is a multiple star system in the constellation of Hercules. Appearing as a single point of light to the naked eye, it is resolvable ...
is classified as a giant star with a radius of while
Epsilon Pegasi Epsilon Pegasi ( Latinised from ε Pegasi, abbreviated Epsilon Peg, ε Peg), formally named Enif , is the brightest star in the northern constellation of Pegasus. With an average apparent visual magnitude of 2.4, this is a second-magnit ...
is a K2 supergiant of only . Although red supergiants are much cooler than the Sun, they are so much larger that they are highly luminous, typically . There is a theoretical upper limit to the radius of a red supergiant at around . In the
Hayashi limit The Hayashi limit is a theoretical constraint upon the maximum radius of a star for a given mass. When a star is fully within hydrostatic equilibrium—a condition where the inward force of gravity is matched by the outward pressure of the gas—t ...
, stars above this radius would be too unstable and simply do not form. Red supergiants have masses between about and 30 or . Main-sequence stars more massive than about do not expand and cool to become red supergiants. Red supergiants at the upper end of the possible mass and luminosity range are the largest known. Their low surface gravities and high luminosities cause extreme mass loss, millions of times higher than the Sun, producing observable nebulae surrounding the star. By the end of their lives red supergiants may have lost a substantial fraction of their initial mass. The more massive supergiants lose mass much more rapidly and all red supergiants appear to reach a similar mass of the order of by the time their cores collapse. The exact value depends on the initial chemical makeup of the star and its rotation rate. Most red supergiants show some degree of visual variability, but only rarely with a well-defined period or amplitude. Therefore, they are usually classified as irregular or semiregular variables. They even have their own sub-classes, SRC and LC for slow semi-regular and slow irregular supergiant variables respectively. Variations are typically slow and of small amplitude, but amplitudes up to four magnitudes are known. Statistical analysis of many known variable red supergiants shows a number of likely causes for variation: just a few stars show large amplitudes and strong noise indicating variability at many frequencies, thought to indicate powerful
stellar wind A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
s that occur towards the end of the life of a red supergiant; more common are simultaneous radial mode variations over a few hundred days and probably non-radial mode variations over a few thousand days; only a few stars appear to be truly irregular, with small amplitudes, likely due to photospheric granulation. Red supergiant photospheres contain a relatively small number of very large convection cells compared to stars like the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
. This causes variations in surface brightness that can lead to visible brightness variations as the star rotates. The spectra of red supergiants are similar to other cool stars, dominated by a forest of absorption lines of metals and molecular bands. Some of these features are used to determine the luminosity class, for example certain near-infrared
cyanogen Cyanogen is the chemical compound with the chemical formula, formula . Its structure is . The simplest stable carbon nitride, it is a Transparency and translucency, colorless and highly toxic gas with a pungency, pungent odor. The molecule is a ...
band strengths and the Ca II triplet.
Maser A maser is a device that produces coherent electromagnetic waves ( microwaves), through amplification by stimulated emission. The term is an acronym for microwave amplification by stimulated emission of radiation. Nikolay Basov, Alexander Pr ...
emission is common from the circumstellar material around red supergiants. Most commonly this arises from H2O and SiO, but hydroxyl (OH) emission also occurs from narrow regions. In addition to high resolution mapping of the circumstellar material around red supergiants,
VLBI Very-long-baseline interferometry (VLBI) is a type of astronomical interferometry used in radio astronomy. In VLBI a signal from an astronomical radio source, such as a quasar, is collected at multiple radio telescopes on Earth or in space. T ...
or VLBA observations of masers can be used to derive accurate parallaxes and distances to their sources. Currently this has been applied mainly to individual objects, but it may become useful for analysis of galactic structure and discovery of otherwise obscured red supergiant stars. Surface abundances of red supergiants are dominated by hydrogen even though hydrogen at the core has been completely consumed. In the latest stages of mass loss, before a star explodes, surface helium may become enriched to levels comparable with hydrogen. In theoretical extreme mass loss models, sufficient hydrogen may be lost that helium becomes the most abundant element at the surface. When pre-red supergiant stars leave the main sequence, oxygen is more abundant than carbon at the surface, and nitrogen is less abundant than either, reflecting abundances from the formation of the star. Carbon and oxygen are quickly depleted and nitrogen enhanced as a result of the dredge-up of CNO-processed material from the fusion layers. Red supergiants are observed to rotate slowly or very slowly. Models indicate that even rapidly rotating main-sequence stars should be braked by their mass loss so that red supergiants hardly rotate at all. Those red supergiants such as
Betelgeuse Betelgeuse is a red supergiant star in the constellation of Orion (constellation), Orion. It is usually the List of brightest stars, tenth-brightest star in the night sky and, after Rigel, the second brightest in its constellation. It i ...
that do have modest rates of rotation may have acquired it after reaching the red supergiant stage, perhaps through binary interaction. The cores of red supergiants are still rotating and the differential rotation rate can be very large.


Definition

Supergiant luminosity classes are easy to determine and apply to large numbers of stars, but they group several very different types of stars into a single category. An evolutionary definition restricts the term supergiant to those massive stars which start core
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
fusion without developing a degenerate helium core and without undergoing a helium flash. They will universally go on to burn heavier elements and undergo core-collapse resulting in a
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
. Less massive stars may develop a supergiant spectral luminosity class at relatively low luminosity, around when they are on the
asymptotic giant branch The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
(AGB) undergoing helium shell burning. Researchers now prefer to categorize these as AGB stars distinct from supergiants because they are less massive, have different chemical compositions at the surface, undergo different types of pulsation and variability, and will evolve differently, usually producing a planetary nebula and white dwarf. Most AGB stars will not become supernovae although there is interest in a class of '' super-AGB stars'', those almost massive enough to undergo full carbon fusion, which may produce peculiar supernovae although without ever developing an iron core. One notable group of low mass high luminosity stars are the RV Tauri variables, AGB or post-AGB stars lying on the
instability strip The unqualified term instability strip usually refers to a region of the Hertzsprung–Russell diagram largely occupied by several related classes of pulsating variable stars: Delta Scuti variables, SX Phoenicis variables, and rapidly oscillat ...
and showing distinctive semi-regular variations.


Evolution

Red supergiants develop from main-sequence stars with masses between about and 30 or . Higher-mass stars never cool sufficiently to become red supergiants. Lower-mass stars develop a degenerate helium core during a red giant phase, undergo a helium flash before fusing helium on the
horizontal branch The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha proc ...
, evolve along the AGB while burning helium in a shell around a degenerate carbon-oxygen core, then rapidly lose their outer layers to become a white dwarf with a planetary nebula. AGB stars may develop spectra with a supergiant luminosity class as they expand to extreme dimensions relative to their small mass, and they may reach luminosities tens of thousands times the sun's. Intermediate "super-AGB" stars, around , can undergo
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
fusion and may produce an electron capture supernova through the collapse of an
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
-
neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
core. Main-sequence stars, burning
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
in their cores, with masses between will have temperatures between about 25,000K and 32,000K and spectral types of early B, possibly very late O. They are already very luminous stars of due to rapid
CNO cycle In astrophysics, the carbon–nitrogen–oxygen (CNO) cycle, sometimes called Bethe–Weizsäcker cycle, after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker, is one of the two known sets of fusion reactions by which stars convert h ...
fusion of hydrogen and they have fully convective cores. In contrast to the Sun, the outer layers of these hot main-sequence stars are not convective. These pre-red supergiant main-sequence stars exhaust the hydrogen in their cores after 5–20 million years. They then start to burn a shell of hydrogen around the now-predominantly helium core, and this causes them to expand and cool into supergiants. Their luminosity increases by a factor of about three. The surface abundance of helium is now up to 40% but there is little enrichment of heavier elements. The supergiants continue to cool and most will rapidly pass through the Cepheid instability strip, although the most massive will spend a brief period as
yellow hypergiant A yellow hypergiant (YHG) is a massive star with an extended atmosphere, a spectral class from A to K, and, starting with an initial mass of about 20–60 solar masses, has lost as much as half that mass. They are amongst the most visually lumino ...
s. They will reach late K or M class and become a red supergiant. Helium fusion in the core begins smoothly either while the star is expanding or once it is already a red supergiant, but this produces little immediate change at the surface. Red supergiants develop deep convection zones reaching from the surface over halfway to the core and these cause strong enrichment of
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
at the surface, with some enrichment of heavier elements. Some red supergiants undergo
blue loop In the field of stellar evolution, a blue loop is a stage in the life of an evolved star where it changes from a cool star to a hotter one before cooling again. The name derives from the shape of the evolutionary track on a Hertzsprung–Russel ...
s where they temporarily increase in temperature before returning to the red supergiant state. This depends on the mass, rate of rotation, and chemical makeup of the star. While many red supergiants will not experience a blue loop, some can have several. Temperatures can reach 10,000K at the peak of the blue loop. The exact reasons for blue loops vary in different stars, but they are always related to the helium core increasing as a proportion of the mass of the star and forcing higher mass-loss rates from the outer layers. All red supergiants will exhaust the helium in their cores within one or two million years and then start to burn carbon. This continues with fusion of heavier elements until an iron core builds up, which then inevitably collapses to produce a supernova. The time from the onset of carbon fusion until the core collapse is no more than a few thousand years. In most cases, core-collapse occurs while the star is still a red supergiant, the large remaining hydrogen-rich atmosphere is ejected, and this produces a
type II supernova A Type II supernova or SNII (plural: ''supernovae'') results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun () to undergo this type ...
spectrum. The
opacity Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation, especially visible light. In radiative transfer, it describes the absorption and scattering of radiation in a medium, such as a plasma, dielectric, shie ...
of this ejected hydrogen decreases as it cools and this causes an extended delay to the drop in brightness after the initial supernova peak, the characteristic of a Type II-P supernova. The most luminous red supergiants, at near solar
metallicity In astronomy, metallicity is the Abundance of the chemical elements, abundance of Chemical element, elements present in an object that are heavier than hydrogen and helium. Most of the normal currently detectable (i.e. non-Dark matter, dark) matt ...
, are expected to lose most of their outer layers before their cores collapse, hence they evolve back to yellow hypergiants and luminous blue variables. Such stars can explode as type II-L supernovae, still with hydrogen in their spectra but not with sufficient hydrogen to cause an extended brightness plateau in their light curves. Stars with even less hydrogen remaining may produce the uncommon type IIb supernova, where there is so little hydrogen remaining that the hydrogen lines in the initial type II spectrum fade to the appearance of a Type Ib supernova. The observed progenitors of type II-P supernovae all have temperatures between 3,500K and 4,400K and luminosities between and . This matches the expected parameters of lower mass red supergiants. A small number of progenitors of type II-L and type IIb supernovae have been observed, all having luminosities around and somewhat higher temperatures up to 6,000K. These are a good match for slightly higher mass red supergiants with high mass-loss rates. There are no known supernova progenitors corresponding to the most luminous red supergiants, and it is expected that these evolve to Wolf Rayet stars before exploding.


Clusters

Red supergiants are necessarily no more than about 25 million years old and such massive stars are expected to form only in relatively large clusters of stars, so they are expected to be found mostly near prominent clusters. However they are fairly short-lived compared to other phases in the life of a star and only form from relatively uncommon massive stars, so there will generally only be small numbers of red supergiants in each cluster at any one time. The massive Hodge 301 cluster in the
Tarantula Nebula The Tarantula Nebula (also known as 30 Doradus) is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner (from Earth, Earth's perspective). Discovery The Tarantula Nebula was observed by Nicolas-Louis de Lacaill ...
contains three. Until the 21st century the largest number of red supergiants known in a single cluster was five in NGC 7419. Most red supergiants are found singly, for example
Betelgeuse Betelgeuse is a red supergiant star in the constellation of Orion (constellation), Orion. It is usually the List of brightest stars, tenth-brightest star in the night sky and, after Rigel, the second brightest in its constellation. It i ...
in the Orion OB1 association and
Antares Antares is the brightest star in the constellation of Scorpius. It has the Bayer designation α Scorpii, which is Latinisation of names, Latinised to Alpha Scorpii. Often referred to as "the heart of the scorpion", Antares is flanked by ...
in the
Scorpius–Centaurus association The Scorpius–Centaurus association (sometimes called Sco–Cen or Sco OB2) is the nearest OB association to the Sun. This stellar association is composed of three subgroups (Upper Scorpius, Upper Centaurus–Lupus, and Lower Centaurus–Crux) ...
. Since 2006, a series of massive clusters have been identified near the base of the Crux-Scutum Arm of the galaxy, each containing multiple red supergiants. RSGC1 contains at least 12 red supergiants, RSGC2 (also known as Stephenson 2) contains at least 26, RSGC3 contains at least 8, and RSGC4 (also known as Alicante 8) also contains at least 8. A total of 80 confirmed red supergiants have been identified within a small area of the sky in the direction of these clusters. These four clusters appear to be part of a massive burst of star formation 10–20 million years ago at the near end of the bar at the centre of the galaxy. Similar massive clusters have been found near the far end of the galactic bar, but not such large numbers of red supergiants.


Examples

Red supergiants are rare stars, but they are visible at great distance and are often variable so there are a number of well-known naked-eye examples: * Antares A *
Betelgeuse Betelgeuse is a red supergiant star in the constellation of Orion (constellation), Orion. It is usually the List of brightest stars, tenth-brightest star in the night sky and, after Rigel, the second brightest in its constellation. It i ...
*
Epsilon Pegasi Epsilon Pegasi ( Latinised from ε Pegasi, abbreviated Epsilon Peg, ε Peg), formally named Enif , is the brightest star in the northern constellation of Pegasus. With an average apparent visual magnitude of 2.4, this is a second-magnit ...
*
Zeta Cephei Zeta Cephei (ζ Cep, ζ Cephei) is a red supergiant star, located about 1000 light-years away in the constellation of Cepheus. Zeta Cephei marks the left shoulder of Cepheus, the King of Ethiopia. It is one of the fundamental stars of th ...
* Lambda Velorum *
Eta Persei Eta Persei (η Persei, abbreviated Eta Per, η Per), is a red supergiant in the constellation of Perseus. Parallax measurements by the Gaia spacecraft imply that it is 1,000 is light-years away from Earth. At such distance, interstellar d ...
* 31 and 32 Cygni * Psi1 Aurigae * 119 Tauri
Mira Mira (), designation Omicron Ceti (ο Ceti, abbreviated Omicron Cet, ο Cet), is a red-giant star estimated to be 200–300 light-years from the Sun in the constellation Cetus. ο Ceti is a binary stellar system, consisting of a vari ...
was historically thought to be a red supergiant star, but is now widely accepted to be an asymptotic giant branch star. Some red supergiants are larger and more luminous, with radii exceeding over a thousand times that of the Sun. These are hence also referred to as red hypergiants: *
Mu Cephei Mu Cephei ( Latinized from μ Cephei, abbreviated Mu Cep or μ Cep), also known as the Garnet Star, is a red supergiant star in the constellation Cepheus. It appears garnet red and is located at the edge of the IC 1396 nebula. It is a 4 ...
* VV Cephei A *
NML Cygni NML Cygni or V1489 Cygni (abbreviated to NML Cyg or V1489 Cyg) is a M-type star, red hypergiant or red supergiant (RSG) in the constellation Cygnus (constellation), Cygnus. It is possibly one of the List of largest stars, largest known ...
*
S Persei S Persei is a red supergiant or hypergiant located near the Double Cluster in Perseus, north of the cluster NGC 869. It is a member of the Perseus OB1 association and one of the largest known stars. If placed in the Solar System, its ph ...
*
UY Scuti UY Scuti (BD-12°5055) is a red supergiant star, located 5,900 light-years away in the constellation Scutum. It is also a pulsating variable star, with a maximum brightness of magnitude 8.29 and a minimum of magnitude 10.56, which ma ...
*
VY Canis Majoris VY Canis Majoris (abbreviated to VY CMa) is an extreme oxygen-rich red hypergiant or red supergiant (O-rich RHG or RSG) and pulsating variable star from the Solar System in the slightly southern constellation of Canis Major. It is on ...
* Westerlund 1 W26 * WOH G64: transitioned into a yellow hypergiant in 2014. * KY Cygni * BI Cygni A survey expected to capture virtually all Magellanic Cloud red supergiants detected around a dozen M class stars Mv−7 and brighter, around a quarter of a million times more luminous than the Sun, and from about 1,000 times the radius of the Sun upwards.


See also

*
List of supernovae A supernova is an event in which a star destroys itself in an explosion which can briefly become as luminous as an entire galaxy. This list of supernovas of historical significance includes events that were observed prior to the development of pho ...
*
Red dwarf A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of fusing star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs are ...
*
Red giant A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The stellar atmosphere, outer atmosphere is inflated and tenuous, making the radius large and the surface t ...


References


Further reading

* *


External links


Red Supergiant Stars
{{Portal bar, Astronomy, Stars, Outer space Star types Stellar phenomena