In
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, the zero object of a given
algebraic structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
is, in the sense explained below, the simplest object of such structure. As a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
it is a
singleton, and as a
magma
Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also ...
has a
trivial structure, which is also an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
. The aforementioned abelian group structure is usually identified as
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
, and the only element is called
zero
0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
, so the object itself is typically denoted as . One often refers to ''the'' trivial object (of a specified
category
Category, plural categories, may refer to:
General uses
*Classification, the general act of allocating things to classes/categories Philosophy
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce)
* Category ( ...
) since every trivial object is
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to any other (under a unique isomorphism).
Instances of the zero object include, but are not limited to the following:
* As a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
, the zero group or
trivial group
In mathematics, a trivial group or zero group is a group that consists of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usu ...
.
* As a
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
, the
zero ring
In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which fo ...
or trivial ring.
* As an
algebra over a field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear map, bilinear product (mathematics), product. Thus, an algebra is an algebraic structure consisting of a set (mathematics), set to ...
or
algebra over a ring
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition ...
, the trivial algebra.
* As a
module (over a
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
), the zero module. The term trivial module is also used, although it may be ambiguous, as a ''trivial G-module'' is a
''G''-module with a trivial action.
* As a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
(over a
field ), the zero vector space, zero-dimensional vector space or just zero space.
These objects are described jointly not only based on the common singleton and trivial group structure, but also because of
shared category-theoretical properties.
In the last three cases the
scalar multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector ...
by an element of the base ring (or field) is defined as:
: , where .
The most general of them, the zero module, is a
finitely-generated module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type.
Related concepts incl ...
with an
empty generating set.
For structures requiring the multiplication structure inside the zero object, such as the
trivial ring
In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which fo ...
, there is only one possible, , because there are no non-zero elements. This structure is
associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
and
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
. A ring which has both an additive and multiplicative identity is trivial if and only if , since this equality implies that for all within ,
:
In this case it is possible to define
division by zero
In mathematics, division by zero, division (mathematics), division where the divisor (denominator) is 0, zero, is a unique and problematic special case. Using fraction notation, the general example can be written as \tfrac a0, where a is the di ...
, since the single element is its own multiplicative inverse. Some properties of depend on exact definition of the multiplicative identity; see ' below.
Any trivial algebra is also a trivial ring. A trivial
algebra over a field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear map, bilinear product (mathematics), product. Thus, an algebra is an algebraic structure consisting of a set (mathematics), set to ...
is simultaneously a zero vector space considered
below
Below may refer to:
*Earth
*Ground (disambiguation)
*Soil
*Floor
* Bottom (disambiguation)
*Less than
*Temperatures below freezing
*Hell or underworld
People with the surname
* Ernst von Below (1863–1955), German World War I general
* Fred Belo ...
. Over a
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
, a trivial
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
is simultaneously a zero module.
The trivial ring is an example of a
rng of square zero. A trivial algebra is an example of a
zero algebra.
The zero-dimensional is an especially ubiquitous example of a zero object, a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over a field with an empty
basis. It therefore has
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
zero. It is also a
trivial group
In mathematics, a trivial group or zero group is a group that consists of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usu ...
over
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
, and a ''trivial module''
mentioned above.
Properties
The zero ring, zero module and zero vector space are the
zero object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism .
The dual notion is that of a terminal object (also called terminal element): ...
s of, respectively, the
category of pseudo-rings, the
category of modules
In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ...
and the
category of vector spaces
In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the rin ...
. However, the zero ring is not a zero object in the
category of rings
In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings i ...
, since there is no
ring homomorphism
In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
of the zero ring in any other ring.
The zero object, by definition, must be a terminal object, which means that a
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
must exist and be unique for an arbitrary object . This morphism maps any element of to .
The zero object, also by definition, must be an initial object, which means that a morphism must exist and be unique for an arbitrary object . This morphism maps , the only element of , to the zero element , called the
zero vector
In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.
Additive identities
An '' additive id ...
in vector spaces. This map is a
monomorphism
In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y.
In the more general setting of category theory, a monomorphis ...
, and hence its image is isomorphic to . For modules and vector spaces, this
subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
is the only empty-generated
submodule
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since t ...
(or 0-dimensional
linear subspace
In mathematics, the term ''linear'' is used in two distinct senses for two different properties:
* linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping'');
* linearity of a ''polynomial''.
An example of a li ...
) in each module (or vector space) .
Unital structures
The object is a
terminal object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism .
The dual notion is that of a terminal object (also called terminal element): ...
of any algebraic structure where it exists, like it was described for examples above. But its existence and, if it exists, the property to be an
initial object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism .
The dual notion is that of a terminal object (also called terminal element) ...
(and hence, a ''zero object'' in the
category-theoretical sense) depend on exact definition of the
multiplicative identity
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
1 in a specified structure.
If the definition of requires that , then the object cannot exist because it may contain only one element. In particular, the zero ring is not a
field. If mathematicians sometimes talk about a
field with one element
In mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French–English pun, Fun. The nam ...
, this abstract and somewhat mysterious mathematical object is not a field.
In categories where the multiplicative identity must be preserved by morphisms, but can equal to zero, the object can exist. But not as initial object because identity-preserving morphisms from to any object where do not exist. For example, in the
category of rings
In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings i ...
Ring the ring of
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s Z is the initial object, not .
If an algebraic structure requires the multiplicative identity, but neither its preservation by morphisms nor , then zero morphisms exist and the situation is not different from non-unital structures considered in the previous section.
Notation
Zero vector spaces and zero modules are usually denoted by (instead of ). This is always the case when they occur in an
exact sequence
In mathematics, an exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next.
Definit ...
.
See also
*
Nildimensional space
*
Triviality (mathematics)
In mathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or a particularly simple object possessing a given structure (e.g., group (mathematics), group, topological space). The n ...
*
Examples of vector spaces
This page lists some examples of vector spaces. See vector space for the definitions of terms used on this page. See also: dimension (vector space), dimension, basis (linear algebra), basis.
''Notation''. Let ''F'' denote an arbitrary Field (ma ...
*
Field with one element
In mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French–English pun, Fun. The nam ...
*
Empty semigroup In mathematics, a semigroup with no elements (the empty semigroup) is a semigroup in which the underlying set is the empty set. Many authors do not admit the existence of such a semigroup. For them a semigroup is by definition a ''non-empty'' set t ...
*
Zero element
In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.
Additive identities
An ''additive ide ...
*
List of zero terms
External links
*
*
* {{MathWorld, title=Zero Module, id=ZeroModule, author=Barile, Margherita
Ring theory
Linear algebra
Object
Object may refer to:
General meanings
* Object (philosophy), a thing, being, or concept
** Object (abstract), an object which does not exist at any particular time or place
** Physical object, an identifiable collection of matter
* Goal, an a ...
Objects (category theory)