Zero-divisor Graph Of Z2xZ4
   HOME

TheInfoList



OR:

In
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, an
element Element or elements may refer to: Science * Chemical element, a pure substance of one type of atom * Heating element, a device that generates heat by electrical resistance * Orbital elements, parameters required to identify a specific orbit of o ...
of a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
is called a left zero divisor if there exists a nonzero in such that , or equivalently if the
map A map is a symbolic depiction of interrelationships, commonly spatial, between things within a space. A map may be annotated with text and graphics. Like any graphic, a map may be fixed to paper or other durable media, or may be displayed on ...
from to that sends to is not
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
. Similarly, an element of a ring is called a right zero divisor if there exists a nonzero in such that . This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element  that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero such that may be different from the nonzero such that ). If the ring is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, then the left and right zero divisors are the same. An element of a ring that is not a left zero divisor (respectively, not a right zero divisor) is called left regular or left cancellable (respectively, right regular or right cancellable). An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regular or cancellable, or a non-zero-divisor. A zero divisor that is nonzero is called a nonzero zero divisor or a nontrivial zero divisor. A non-
zero 0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
ring with no nontrivial zero divisors is called a
domain A domain is a geographic area controlled by a single person or organization. Domain may also refer to: Law and human geography * Demesne, in English common law and other Medieval European contexts, lands directly managed by their holder rather ...
.


Examples

* In the
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
\mathbb/4\mathbb, the residue class \overline is a zero divisor since \overline \times \overline=\overline=\overline. * The only zero divisor of the ring \mathbb of
integers An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
is 0. * A
nilpotent In mathematics, an element x of a ring (mathematics), ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister Idempotent (ring theory), idem ...
element of a nonzero ring is always a two-sided zero divisor. * An
idempotent element Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
e\ne 1 of a ring is always a two-sided zero divisor, since e(1-e)=0=(1-e)e. * The ring of ''n'' × ''n'' matrices over a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
has nonzero zero divisors if ''n'' ≥ 2. Examples of zero divisors in the ring of 2 × 2
matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
(over any nonzero ring) are shown here: \begin1&1\\2&2\end\begin1&1\\-1&-1\end=\begin-2&1\\-2&1\end\begin1&1\\2&2\end=\begin0&0\\0&0\end , \begin1&0\\0&0\end\begin0&0\\0&1\end =\begin0&0\\0&1\end\begin1&0\\0&0\end =\begin0&0\\0&0\end. * A
direct product In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
of two or more nonzero rings always has nonzero zero divisors. For example, in R_1 \times R_2 with each R_i nonzero, (1,0)(0,1) = (0,0), so (1,0) is a zero divisor. * Let K be a field and G be a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
. Suppose that G has an element g of finite
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
n > 1. Then in the
group ring In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the gi ...
K /math> one has (1-g)(1+g+ \cdots +g^)=1-g^=0, with neither factor being zero, so 1-g is a nonzero zero divisor in K /math>.


One-sided zero-divisor

* Consider the ring of (formal) matrices \beginx&y\\0&z\end with x,z\in\mathbb and y\in\mathbb/2\mathbb. Then \beginx&y\\0&z\end\begina&b\\0&c\end=\beginxa&xb+yc\\0&zc\end and \begina&b\\0&c\end\beginx&y\\0&z\end=\beginxa&ya+zb\\0&zc\end. If x\ne0\ne z, then \beginx&y\\0&z\end is a left zero divisor
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
x is
even Even may refer to: General * Even (given name), a Norwegian male personal name * Even (surname), a Breton surname * Even (people), an ethnic group from Siberia and Russian Far East **Even language, a language spoken by the Evens * Odd and Even, a ...
, since \beginx&y\\0&z\end\begin0&1\\0&0\end=\begin0&x\\0&0\end, and it is a right zero divisor if and only if z is even for similar reasons. If either of x,z is 0, then it is a two-sided zero-divisor. *Here is another example of a ring with an element that is a zero divisor on one side only. Let S be the
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of all
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
s of integers (a_1,a_2,a_3,...). Take for the ring all
additive map In algebra, an additive map, Z-linear map or additive function is a function f that preserves the addition operation: f(x + y) = f(x) + f(y) for every pair of elements x and y in the domain of f. For example, any linear map is additive. When ...
s from S to S, with
pointwise In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some Function (mathematics), function f. An important class of pointwise concepts are the ''pointwise operations'', that ...
addition and
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography * Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
as the ring operations. (That is, our ring is \mathrm(S), the ''
endomorphism ring In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in ...
'' of the additive group S.) Three examples of elements of this ring are the right shift R(a_1,a_2,a_3,...)=(0,a_1,a_2,...), the left shift L(a_1,a_2,a_3,...)=(a_2,a_3,a_4,...), and the projection map onto the first factor P(a_1,a_2,a_3,...)=(a_1,0,0,...). All three of these additive maps are not zero, and the composites LP and PR are both zero, so L is a left zero divisor and R is a right zero divisor in the ring of additive maps from S to S. However, L is not a right zero divisor and R is not a left zero divisor: the composite LR is the identity. RL is a two-sided zero-divisor since RLP=0=PRL, while LR=1 is not in any direction.


Non-examples

* The ring of integers
modulo In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , mo ...
a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
has no nonzero zero divisors. Since every nonzero element is a unit (ring theory), unit, this ring is a finite field. * More generally, a division ring has no nonzero zero divisors. * A non-zero commutative ring whose only zero divisor is 0 is called an integral domain.


Properties

* In the ring of  ×  matrices over a field, the left and right zero divisors coincide; they are precisely the singular matrix, singular matrices. In the ring of  ×  matrices over an integral domain, the zero divisors are precisely the matrices with determinant zero. * Left or right zero divisors can never be unit (ring theory), units, because if is invertible and for some nonzero , then , a contradiction. * An element is Cancellation property, cancellable on the side on which it is regular. That is, if is a left regular, implies that , and similarly for right regular.


Zero as a zero divisor

There is no need for a separate convention for the case , because the definition applies also in this case: * If is a ring other than the zero ring, then is a (two-sided) zero divisor, because any nonzero element satisfies . * If is the zero ring, in which , then is not a zero divisor, because there is no ''nonzero'' element that when multiplied by yields . Some references include or exclude as a zero divisor in ''all'' rings by convention, but they then suffer from having to introduce exceptions in statements such as the following: * In a commutative ring , the set of non-zero-divisors is a multiplicative set in . (This, in turn, is important for the definition of the total quotient ring.) The same is true of the set of non-left-zero-divisors and the set of non-right-zero-divisors in an arbitrary ring, commutative or not. * In a commutative noetherian ring , the set of zero divisors is the union (set theory), union of the associated prime, associated prime ideals of .


Zero divisor on a module

Let be a commutative ring, let be an -Module (mathematics), module, and let be an element of . One says that is -regular if the "multiplication by " map M \,\stackrel\to\, M is injective, and that is a zero divisor on otherwise. The set of -regular elements is a multiplicative set in . Specializing the definitions of "-regular" and "zero divisor on " to the case recovers the definitions of "regular" and "zero divisor" given earlier in this article.


See also

* Zero-product property * Glossary of commutative algebra (Exact zero divisor) * Zero-divisor graph * Sedenions, which have zero divisors


Notes


References


Further reading

* * * {{MathWorld , title=Zero Divisor , urlname=ZeroDivisor Abstract algebra Ring theory 0 (number) Sedenions