HOME

TheInfoList



OR:

DNA repair protein XRCC4 (hXRCC4) also known as X-ray repair cross-complementing protein 4 is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''XRCC4''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. ''XRCC4'' is also expressed in many other
animal Animals are multicellular, eukaryotic organisms in the Biology, biological Kingdom (biology), kingdom Animalia (). With few exceptions, animals heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, ...
s,
fungi A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
and
plants Plants are the eukaryotes that form the kingdom Plantae; they are predominantly photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with cyanobacteria to produce sugars f ...
. hXRCC4 is one of several core
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s involved in the
non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair ...
(NHEJ) pathway to repair
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
double strand breaks (DSBs). NHEJ requires two main components to achieve successful completion. The first component is the cooperative binding and
phosphorylation In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writ ...
of
artemis In ancient Greek religion and Greek mythology, mythology, Artemis (; ) is the goddess of the hunting, hunt, the wilderness, wild animals, transitions, nature, vegetation, childbirth, Kourotrophos, care of children, and chastity. In later tim ...
by the catalytic subunit of the DNA-dependent protein kinase ( DNA-PKcs). Artemis cleaves the ends of damaged DNA to prepare it for ligation. The second component involves the bridging of DNA to DNA ligase 4, by hXRCC4, with the aid of Cernunnos-XLF. DNA-PKcs and hXRCC4 are anchored to Ku70 / Ku80 heterodimer, which are bound to the DNA ends. Since hXRCC4 is the key protein that enables interaction of DNA ligase 4 to damaged DNA and therefore ligation of the ends, mutations in the ''XRCC4'' gene were found to cause embryonic lethality in mice and developmental inhibition and
immunodeficiency Immunodeficiency, also known as immunocompromise, is a state in which the immune system's ability to fight infectious diseases and cancer is compromised or entirely absent. Most cases are acquired ("secondary") due to extrinsic factors that aff ...
in humans. Furthermore, certain mutations in ''XRCC4'' are associated with an increased risk of cancer.


Double strand breaks

Double strand breaks (DSBs) are mainly caused by free radicals generated from ionizing radiation in the environment and from by-products released continually during cellular metabolism. DSBs that are not efficiently repaired may result in the loss of important protein coding genes and regulatory sequences required for gene expression necessary for the life of a cell. DSBs that cannot rely on a newly copied sister chromosome generated by DNA replication to fill in the gap will go into the NHEJ pathway. This method of repair is essential as it is a last resort to prevent loss of long stretches of the chromosome. NHEJ is also used to repair DSBs generated during
V(D)J recombination V(D)J recombination (variable–diversity–joining rearrangement) is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire ...
when gene regions are rearranged to create the unique antigen binding sites of antibodies and T-cell receptors.


Sources of DNA damage

DNA damage occurs very frequently and is generated from exposure to a variety of both exogenous and endogenous genotoxic sources. One of these include
ionizing radiation Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
, such as
gamma radiation A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
and
X-rays An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
, which ionize the deoxyribose groups in the DNA backbone and can induce DSBs.
Reactive oxygen species In chemistry and biology, reactive oxygen species (ROS) are highly Reactivity (chemistry), reactive chemicals formed from diatomic oxygen (), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H2O2), superoxide (O2−), hydroxyl ...
(ROS), such as
superoxide In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula . The systematic name of the anion is dioxide(1−). The reactive oxygen ion superoxide is particularly important as the product of t ...
(O2),
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
(H2O2),
hydroxyl radical The hydroxyl radical, •HO, is the neutral form of the hydroxide ion (HO–). Hydroxyl radicals are highly reactive and consequently short-lived; however, they form an important part of radical chemistry. Most notably hydroxyl radicals are pr ...
s (HO), and
singlet oxygen Singlet oxygen, systematically named dioxygen(singlet) and dioxidene, is a gaseous inorganic chemistry, inorganic chemical with the formula O=O (also written as or ), which is in a quantum state where all electrons are Radical (chemistry), spin p ...
(1O2), can also produce DSBs as a result of ionizing radiation as well as cellular metabolic processes that are naturally occurring. DSBs can also be caused by the action of
DNA polymerase A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
while attempting to replicate DNA over a nick that was introduced as a result of DNA damage.


Consequences of DSBs

There are many types of DNA damage, but DSBs, in particular, are the most harmful as both strands are completely disjointed from the rest of the
chromosome A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
. If an efficient repair mechanism does not exist, the ends of the DNA can eventually degrade, leading to a permanent loss of sequence. A double-stranded gap in DNA will also prevent replication from proceeding, resulting in an incomplete copy of that specific
chromosome A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
, targeting the cell for
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
. As with all DNA damage, DSBs can introduce new
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
s that can ultimately lead to
cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
.


DSB repair methods

There are two methods for repairing DSBs depending on when the damage occurs during
mitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...
. If the DSB occurs after DNA replication has completed proceeding S phase of the
cell cycle The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
, the DSB repair pathway will use
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...
by pairing with the newly synthesized daughter strand to repair the break. However, if the DSB is generated prior to synthesis of the sister chromosome, then the template sequence that is required will be absent. For this circumstance, the NHEJ pathway provides a solution for repairing the break and is the main system used to repair DSBs in humans and multicellular eukaryotes. During NHEJ, very short stretches of complementary DNA, one base pair or more at a time, are hybridized together, and the overhangs are removed. As a result, this specific region of the genome is permanently lost and the deletion can lead to cancer and premature aging.


Properties


Gene and protein

''XRCC4'' is located on chromosome 5, specifically at 5q14.2. This gene contains eight
exons An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequence i ...
and three
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
transcript variants, which encode two different
protein isoforms A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene and are the result of genetic differences. While many perform the same or similar biological roles, some isoforms have uniqu ...
. Transcript variant 1, mRNA, RefSeq NM_003401.3, is 1688 bp long and is the shortest out of the three variants. It is missing a short sequence in the 3' coding region as compared to variant 2. Isoform 1 contains 334
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s. Transcript variant 2, mRNA, RefSeq NM_022406, is 1694 bp long and encodes the longest isoform 2, which contains 336
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the Proteinogenic amino acid, 22 α-amino acids incorporated into p ...
. Transcript variant 3, RefSeq NM_022550.2, is 1735 bp and is the longest, but it also encodes for the same isoform 1 as variant 1. It contains an additional sequence in the 5'UTR of the mRNA transcript and lacks a short sequence in the 3' coding region as compared to variant 2.


Structure

hXRCC4 is a tetramer that resembles the shape of a dumbbell containing two globular ends separated by a long, thin stalk. The tetramer is composed of two dimers, and each dimer is made up of two similar subunits. The first subunit (L) contains amino acid residues 1–203 and has a longer stalk than the second subunit (S) which contains residues 1–178. The globular N-terminal domains of each subunit are identical. They are made up of two, antiparallel
beta sheet The beta sheet (β-sheet, also β-pleated sheet) is a common motif of the regular protein secondary structure. Beta sheets consist of beta strands (β-strands) connected laterally by at least two or three backbone hydrogen bonds, forming a gene ...
s that face each other in a beta sandwich-like structure (i.e., a "flattened" beta barrel) and are separated by two alpha helices on one side. The N-terminus begins with one beta sheet composed of strands 1, 2, 3, and 4, followed by a helix-turn-helix motif of the two alpha helices, αA and αB, which continues into strands 5, 6, 7, and ending with one alpha-helical stalk at the
C-terminus The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, carboxy tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein Proteins are large biomolecules and macromolecules that comp ...
. αA and αB are perpendicular to one another, and because one end of αB is partially inserted between the two beta sheets, it causes them to flare out away from each other. The beta sandwich structure is held together through three hydrogen bonds between antiparallel strands 4 and 7 and one hydrogen bond between strands 1 and 5. The two helical stalks between subunits L and S intertwine with a single left-handed crossover into a coiled-coil at the top, near the globular domains forming a palm tree configuration. This region interacts with the two alpha helices of the second dimer in an opposite orientation to form a four-helix bundle and the dumbbell-shaped tetramer.


Post-translational modifications

In order for hXRCC4 to be sequestered from the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
to the nucleus to repair a DSB during NHEJ or to complete
V(D)J recombination V(D)J recombination (variable–diversity–joining rearrangement) is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire ...
,
post-translational modification In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translation (biolog ...
at
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. Lysine contains an α-amino group (which is in the protonated form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group ( ...
210 with a small
ubiquitin Ubiquitin is a small (8.6  kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 19 ...
-related modifier (SUMO), or sumoylation, is required. SUMO modification of diverse types of DNA repair proteins can be found in topoisomerases, base excision glycosylase TDG, Ku70/80, and BLM
helicase Helicases are a class of enzymes that are vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic double helix, separating the two hybridized ...
. A common conserved motif is typically found to be a target of SUMO modification, ΨKXE (where Ψ is a bulky,
hydrophobic In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, thu ...
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
). In the case of the XRCC4 protein, the consensus sequence surrounding lysine 210 is IKQE.
Chinese hamster ovary cell Chinese hamster ovary (CHO) cells are a family of immortalized cell lines derived from epithelial cells of the ovary of the Chinese hamster, often used in biological and medical research and commercially in the production of recombinant therap ...
s, CHO, that express the mutated form of ''XRCC4'' at K210 cannot be modified with SUMO, fail recruitment to the nucleus and instead accumulate in the cytoplasm. Furthermore, these cells are
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
sensitive and do not successfully complete V(D)J recombination.


Interactions

Upon generation of a DSB, Ku proteins will move through the cytoplasm until they find the site of the break and bind to it. Ku recruits XRCC4 and Cer-XLF and both of these proteins interact cooperatively with one another through specific residues to form a nucleoprotein pore complex that wraps around DNA. Cer-XLF is a homodimer that is very similar to XRCC4 in the structure and size of its N-terminal and C-terminal domains. Residues
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidinium, guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) a ...
64,
leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-Car ...
65, and leucine 115 in Cer-XLF interact with lysines 65 and 99 in XRCC4 within their N-terminal domains. Together they form a filament bundle that wraps around DNA in an alternating pattern. Hyper-
phosphorylation In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writ ...
of the C-terminal alpha helical domains of XRCC4 by DNA-PKcs facilitates this interaction. XRCC4 dimer binds to a second dimer on an adjacent DNA strand to create a tetramer for DNA bridging early on in NHEJ. Prior to ligation, Lig IV binds to the C-terminal stalk of XRCC4 at the site of the break and displaces the second XRCC4 dimer. The BRCT2 domain of Lig IV hydrogen bonds with XRCC4 at this domain through multiple residues and introduces a kink in the two alpha helical tails. The helix-loop-helix clamp connected to the BRCT-linker also makes extensive contacts.


Mechanism


NHEJ

The process of NHEJ involves XRCC4 and a number of tightly coupled proteins acting in concert to repair the DSB. The system begins with the binding of one heterodimeric protein called Ku70/80 to each end of the DSB to maintain them close together in preparation for ligation and prevent their degradation. Ku70/80 then sequesters one DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to the DNA ends to enable the binding of Artemis protein to one end of each DNA-PKcs. One end of the DNA-PKcs joins to stabilize the proximity of the DSB and allow very short regions of DNA complementarity to hybridize. DNA-PKcs then phosphorylates Artemis at a
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − ...
/
threonine Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form when dissolved in water), a carboxyl group (which is in the deprotonated −COO− ...
to activate its exonuclease activity and cleave
nucleotides Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
at the single strand tails that are not hybridized in a 5' to 3' direction. Two XRCC4 proteins are post- translationally modified for recognition and localization to Ku70/80 (5). The two XRCC4 proteins dimerize together and bind to Ku70/80 at the ends of the DNA strands to promote ligation. XRCC4 then forms a strong complex with DNA ligase IV, LigIV, which is enhanced by Cernunnos XRCC4-like factor, Cer-XLF. Cer-XLF only binds to XRCC4 without direct interaction with LigIV. LigIV then joins the DNA ends by catalyzing a covalent
phosphodiester bond In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups () in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage . Discussion of phosphodiesters is d ...
.


V(D)J recombination

V(D)J recombination is the rearrangement of multiple, distinct
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
segments in germ-line DNA to produce the unique protein domains of immune cells,
B cells B cells, also known as B lymphocytes, are a type of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or inserted into the plasm ...
and
T cells T cells (also known as T lymphocytes) are an important part of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their ce ...
, that will specifically recognize foreign
antigens In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. An ...
such as
viruses A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are found in almo ...
,
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
, and
pathogen In biology, a pathogen (, "suffering", "passion" and , "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a Germ theory of d ...
ic eukaryotes. B cells produce
antibodies An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses, including those that caus ...
that are secreted into the bloodstream and T cells produce receptors that once translated are transported to the outer
lipid bilayer The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes form a continuous barrier around all cell (biology), cells. The cell membranes of almost all organisms and many viruses a ...
of the cell. Antibodies are composed of two light and two heavy chains. The antigen binding site consists of two variable regions, VL and VH. The remainder of the antibody structure is made up of constant regions, CL, CH, CH2 and CH3. The Kappa locus in the mouse encodes an antibody light chain and contains approximately 300 gene segments for the variable region, V, four J segments than encode a short protein region, and one constant, C, segment. To produce a light chain with one unique type of VL, when B cells are differentiating, DNA is rearranged to incorporate a unique combination of the V and J segments. RNA splicing joins the recombined region with the C segment. The heavy chain gene also contain numerous diversity segments, D, and multiple constant segments, Cμ, Cδ, Cγ, Cε, Cα. Recombination occurs in a specific region of the gene that is located between two conserved sequence motifs called recombination signal sequences. Each motif is flanked by a 7 bp and 9 bp sequence that is separated by a 12 bp spacer, referred to as class 1, or a 23 bp spacer, referred to as class 2. A
recombinase Recombinases are genetic recombination enzymes. Site specific recombinases DNA recombinases are widely used in multicellular organisms to manipulate the structure of genomes, and to control gene expression. These enzymes, derived from bacteria ( ...
made up of RAG1 and RAG2 subunits always cleave between these two sites. The cleavage results in two hairpin structures for the V and J segments, respectively, and the non-coding region, are now separated from the V and J segments by a DSB. The hairpin coding region goes through the process of NHEJ where the closed end is cleaved and repaired. The non-coding region is circularized and degraded. Thus, NHEJ is also important in the development of the immune system via its role in V(D)J recombination.


Pathology

Recent studies have shown an association between XRCC4 and potential susceptibility to a variety of pathologies. The most frequently observed linkage is between XRCC4 mutations and susceptibility to cancers such as bladder cancer, breast cancer, and lymphomas. Studies have also pointed to a potential linkage between XRCC4 mutation and endometriosis. Autoimmunity is also being studied in this regard. Linkage between XRCC4 mutations and certain pathologies may provide a basis for diagnostic biomarkers and, eventually, potential development of new therapeutics.


Cancer susceptibility

XRCC4 polymorphisms have been linked to a risk of susceptibility for cancers such as
bladder cancer Bladder cancer is the abnormal growth of cells in the bladder. These cells can grow to form a tumor, which eventually spreads, damaging the bladder and other organs. Most people with bladder cancer are diagnosed after noticing blood in thei ...
,
breast cancer Breast cancer is a cancer that develops from breast tissue. Signs of breast cancer may include a Breast lump, lump in the breast, a change in breast shape, dimpling of the skin, Milk-rejection sign, milk rejection, fluid coming from the nipp ...
,
prostate cancer Prostate cancer is the neoplasm, uncontrolled growth of cells in the prostate, a gland in the male reproductive system below the bladder. Abnormal growth of the prostate tissue is usually detected through Screening (medicine), screening tests, ...
,
hepatocellular carcinoma Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults and is currently the most common cause of death in people with cirrhosis. HCC is the third leading cause of cancer-related deaths worldwide. HCC most common ...
,
lymphoma Lymphoma is a group of blood and lymph tumors that develop from lymphocytes (a type of white blood cell). The name typically refers to just the cancerous versions rather than all such tumours. Signs and symptoms may include enlarged lymph node ...
s, and
multiple myeloma Multiple myeloma (MM), also known as plasma cell myeloma and simply myeloma, is a cancer of plasma cells, a type of white blood cell that normally produces antibody, antibodies. Often, no symptoms are noticed initially. As it progresses, bone ...
. With respect to bladder cancer, for example, the link between XRCC4 and risk of cancer susceptibility was based on hospital-based case-control histological studies of gene variants of both XRCC4 and XRCC3 and their possible association with risk for urothelial bladder cancer. The linkage with risk for urothelial bladder cancer susceptibility was shown for XRCC4, but not for XRCC3 With regard to breast cancer, the linkage with "increased risk of breast cancer" was based on an examination of functional polymorphisms of the XRCC4 gene carried out in connection with a meta-analysis of five case-control studies . There is also at least one hospital-based case-control histological study indicating that polymorphisms in XRCC4 may have an "influence" on prostate cancer susceptibility. Conditional (CD21-cre-mediated) deletion of the XRCC4 NHEJ gene in
p53 p53, also known as tumor protein p53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory transcription factor protein that is often mutated in human cancers. The p53 proteins (originally thou ...
-deficient peripheral mouse
B cell B cells, also known as B lymphocytes, are a type of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or inserted into the plasm ...
s resulted in surface Ig-negative B-cell lymphomas, and these lymphomas often had a "reciprocal chromosomal translocation" fusing IgH to Myc (and also had "large chromosomal deletions or translocations" involving IgK or IgL, with IgL "fusing" to oncogenes or to IgH). XRCC4- and p53-deficient pro-B lymphomas "routinely activate c-myc by gene amplification"; and furthermore, XRCC4- and p53-deficient peripheral B-cell lymphomas "routinely ectopically activate" a single copy of c-myc. Indeed, in view of the observation by some that "DNA repair enzymes are correctives for DNA damage induced by carcinogens and anticancer drugs", it should not be surprising that "SNPs in DNA repair genes may play an important part" in cancer susceptibility. In addition to the cancers identified above, XRCC4 polymorphisms have been identified as having a potential link to various additional cancers such as
oral cancer Oral cancer, also known as oral cavity cancer, tongue cancer or mouth cancer, is a cancer of the lining of the lips, mouth, or upper throat. In the mouth, it most commonly starts as a painless red or white patch, that thickens, gets ulcerated ...
,
lung cancer Lung cancer, also known as lung carcinoma, is a malignant tumor that begins in the lung. Lung cancer is caused by genetic damage to the DNA of cells in the airways, often caused by cigarette smoking or inhaling damaging chemicals. Damaged ...
,
gastric cancer Stomach cancer, also known as gastric cancer, is a malignant tumor of the stomach. It is a cancer that develops in the lining of the stomach. Most cases of stomach cancers are gastric carcinomas, which can be divided into a number of subtypes ...
, and
glioma A glioma is a type of primary tumor that starts in the glial cells of the brain or spinal cord. They are malignant but some are extremely slow to develop. Gliomas comprise about 30% of all brain and central nervous system tumors and 80% of ...
s.


Senescence

Declining ability to repair DNA double-strand breaks by NHEJ may be a significant factor in the
aging Ageing (or aging in American English) is the process of becoming Old age, older until death. The term refers mainly to humans, many other animals, and fungi; whereas for example, bacteria, perennial plants and some simple animals are potentiall ...
process. Li et al. found that, in humans, the efficiency of NHEJ repair declines from age 16 to 75 years. Their study indicated that decreased expression of XRCC4 and other NHEJ proteins drives an age-associated decline in NHEJ efficiency and fidelity. They suggested that the age related decline in expression of XRCC4 may contribute to cellular senescence.


Autoimmunity

Based on the findings that (1) several polypeptides in the NHEJ pathway are "potential targets of autoantibodies" and (2) "one of the autoimmune epitopes in XRCC4 coincides with a sequence that is a nexus for radiation-induced regulatory events", it has been suggested that exposure to DNA double-strand break-introducing agents "may be one of the factors" mediating autoimmune responses.


Endometriosis susceptibility

There has been speculation that "XRCC4 codon 247*A and XRCC4 promoter -1394*T related genotypes and alleles... might be associated with higher endometriosis susceptibilities and pathogenesis".


Potential use as a cancer biomarker

In view of the possible associations of XRCC4 polymorphisms with risk of cancer susceptibility (see discussion above), XRCC4 could be used as a
biomarker In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, ...
for
cancer screening The objective of cancer screening is to detect cancer before symptoms appear, involving various methods such as blood tests, urine tests, DNA tests, and medical imaging. The purpose of screening is early cancer detection, to make the cancer easie ...
, particularly with respect to prostate cancer, breast cancer, and bladder cancer. In fact, XRCC4 polymorphisms were specifically identified as having the potential to be novel useful markers for "primary prevention and anticancer intervention" in the case of urothelial bladder cancer.


Radiosensitization of tumor cells

In view of the role of XRCC4 in DNA double-strand break repair, the relationship between impaired XRCC4 function and the radiosensitization of tumor cells has been investigated. For instance, it has been reported that " RNAi-mediated targeting of noncoding and coding sequences in DNA repair gene messages efficiently radiosensitizes human tumor cells".


Potential role in therapeutics

There has been discussion in the literature concerning the potential role of XRCC4 in the development of novel therapeutics. For instance, Wu ''et al.'' have suggested that since the XRCC4 gene is "critical in NHEJ" and is "positively associated with cancer susceptibility", some XRCC4 SNPs such as G-1394T (rs6869366) "may serve as a common SNP for detecting and predict ngvarious cancers (so far for breast, gastric and prostate cancers...)"; and, although further investigation is needed, "they may serve as candidate targets for personalized anticancer drugs". The possibility of detecting endometriosis on this basis has also been mentioned, and this may also possibly lead to the eventual development of treatments. In evaluating further possibilities for anticancer treatments, Wu ''et al''. also commented on the importance of "co-treatments of DNA-damaging agents and radiation". Specifically, Wu ''et al''. noted that the "balance between DNA damage and capacity of DNA repair mechanisms determines the final therapeutic outcome" and "the capacity of cancer cells to complete DNA repair mechanisms is important for therapeutic resistance and has a negative impact upon therapeutic efficacy", and thus theorized that " armacological inhibition of recently detected targets of DNA repair with several small-molecule compounds... has the potential to enhance the cytotoxicity of anticancer agents".


Microcephalic primordial dwarfism

In humans, mutations in the XRCC4 gene cause microcephalic primordial dwarfism, a phenotype characterized by marked microcephaly, facial dysmorphism, developmental delay and short stature. Although immunoglobulin junctional diversity is impaired, these individuals do not show a recognizable immunological phenotype. In contrast to individuals with a LIG4 mutation, pancytopenia resulting in bone marrow failure is not observed in individuals with XRCC4 deficiency. At the cellular level, disruption of XRCC4 induces hypersensitivity to agents that induce double-strand breaks, defective double-strand break repair and increased apoptosis after induction of DNA damage.


Anti-XRCC4 antibodies

Anti-XRCC4 antibodies including phosphospecific antibodies to pS260 and pS318 in XRCC4 have been developed.; Antibodies to XRCC4 can have a variety of uses, including use in immunoassays to conduct research in areas such as DNA damage and repair, non-homologous end joining, transcription factors, epigenetics and nuclear signaling.


History

Research carried out in the 1980s revealed that a Chinese hamster ovary (CHO) cell mutant called XR-1 was "extremely sensitive" with regard to being killed by gamma rays during the G1 portion of the cell cycle but, in the same research studies, showed "nearly normal resistance" to gamma-ray damage during the late S phase; and in the course of this research, XR-1's cell-cycle sensitivity was correlated with its inability to repair DNA double-strand breaks produced by ionizing radiation and restriction enzymes. In particular, in a study using somatic cell hybrids of XR-1 cells and human fibroblasts, Giaccia ''et al.'' (1989) showed that the XR-1 mutation was a recessive mutation; and in follow-up to this work, Giaccia ''et al.'' (1990) carried out further studies examining the XR-1 mutation (again using somatic cell hybrids formed between XR-1 and human fibroblasts) and were able to map the human complementing gene to chromosome 5 using chromosome-segregation analysis. Giaccia ''et al'', tentatively assigned this human gene the name "XRCC4" (an abbreviation of "X-ray-complementing Chinese hamster gene 4") and determined that (a) the newly named XRCC4 gene biochemically restored the hamster defect to normal levels of resistance to gamma-ray radiation and bleomycin and (b) the XRCC4 gene restored the proficiency to repair DNA DSBs. Based on these findings, Giaccia ''et al.'' proposed that XRCC4―as a single gene―was responsible for the XR-1 phenotype.


References


Further reading

* * * * * * * * * * * * * * * *


External links

* * * {{NLM content DNA repair