Van Der Waals Heterostructure
   HOME

TheInfoList



OR:

A two-dimensional semiconductor (also known as 2D semiconductor) is a type of natural
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
with thicknesses on the atomic scale. Geim and Novoselov et al. initiated the field in 2004 when they reported a new semiconducting material
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
, a flat monolayer of carbon atoms arranged in a 2D honeycomb lattice. A 2D monolayer semiconductor is significant because it exhibits stronger piezoelectric coupling than traditionally employed bulk forms. This coupling could enable applications. One research focus is on designing
nanoelectronic Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical p ...
components by the use of graphene as
electrical conductor In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively c ...
, hexagonal boron nitride as
electrical insulator An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and electrical conductor, conductors—con ...
, and a transition metal dichalcogenide as
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
.


Materials


Graphene

Graphene, consisting of single sheets of carbon atoms, has high
electron mobility In solid-state physics, the electron mobility characterizes how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for Electron hole, holes, called hole mobilit ...
and high
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
. One issue regarding graphene is its lack of a
band gap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
, which poses a problem in particular with digital electronics because it is unable to switch off
field-effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the current through a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three termi ...
s (FETs).


Hexagonal boron nitride

Monolayer hexagonal
boron nitride Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula B N. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexago ...
(h-BN) is an insulator with a high energy gap (5.97 eV). However, it can also function as a semiconductor with enhanced conductivity due to its zigzag sharp edges and vacancies. h-BN is often used as substrate and barrier due to its insulating property. h-BN also has a large thermal conductivity.


Transition-metal dichalcogenides

Transition-metal dichalcogenide monolayers (TMDs or TMDCs) are a class of two-dimensional materials that have the chemical formula MX2, where M represents
transition metals In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
from group IV, V and VI, and X represents a
chalcogen The chalcogens (ore forming) ( ) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the rad ...
such as
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
,
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
or
tellurium Tellurium is a chemical element; it has symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally fou ...
. MoS2, MoSe2, MoTe2, WS2 and WSe2 are TMDCs. TMDCs have layered structure with a plane of metal atoms in between two planes of chalcogen atoms as shown in Figure 1. Each layer is bonded strongly in plane, but weakly in interlayers. Therefore, TMDCs can be easily exfoliated into atomically thin layers through various methods. TMDCs show layer-dependent optical and electrical properties. When exfoliated into monolayers, the band gaps of several TMDCs change from indirect to direct, which lead to broad applications in nanoelectronics, optoelectronics, and
quantum computing A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of wave-particle duality, both particles and waves, and quantum computing takes advantage of this behavior using s ...
. While exfoliated TMDC monolayers exhibit promising optoelectronic properties, they are often limited by intrinsic and extrinsic defects, such as sulfur vacancies and grain boundaries, which can negatively affect their performance. To address these issues, various chemical passivation techniques, including the use of superacids and thiol molecules, have been developed to enhance their photoluminescence and charge transport properties. Additionally, phase and strain engineering have emerged as powerful strategies to further optimize the electronic characteristics of TMDCs, making them more suitable for advanced applications in nanoelectronics and quantum computing.


III-VI chalcogenides

Another class of 2D semiconductors are III-VI chalcogenides. These materials have the chemical formula MX, where M is a metal from group 13 ( Ga, In) and X is a chalcogen atom ( S, Se, Te). Typical members of this group are InSe and GaSe, both of which have shown high electronic mobilities and band gaps suitable for a wide range of electronic applications.


Synthesis

2D semiconductor materials are often synthesized using a
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (electro ...
(CVD) method. Because CVD can provide large-area, high-quality, and well-controlled layered growth of 2D semiconductor materials, it also allows synthesis of two-dimensional
heterojunction A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in m ...
s. When building devices by stacking different 2D materials, mechanical exfoliation followed by transferring is often used. Other possible synthesis methods include electrochemical deposition, chemical exfoliation, hydrothermal synthesis, and
thermal decomposition Thermal decomposition, or thermolysis, is a chemical decomposition of a substance caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic ...
. In 2008 cadmium selenide CdSe quasi 2D platelets were first synthesized by colloidal method with thicknesses of several atomic layers and lateral sizes up to dozens of nanometers. Modification of the procedure allowed to obtain other nanoparticles with different compositions (like CdTe, HgSe, CdSexS1−x alloys, core/shell and core/crown heterostructures) and shapes (as scrolls, nanoribbons, etc.).


Mechanical behavior

2D semiconductor materials unique crystal structures often yield unique mechanical properties, especially in the monolayer limit, such as high stiffness and strength in the 2D atomic plane, but low flexural rigidity. Testing these materials is more challenging than their bulk counterparts, with methods employing the use of scanning probe techniques such as atomic force microscopy (AFM). These experimental methods are typically performed on 2D materials suspended over holes in a substrate. The tip of the AFM is then used to press into the flake and measure the response of the material. From this mechanical properties such as Young modulus, yield strain, and flexural strength.


Graphene

With a Youngs modulus of almost 1 TPa, graphene boasts incredible toughness due to the strength of the carbon-carbon bonding. Graphene however, has a fracture toughness of about 4 MPa/m, making it brittle and easy to crack . Graphene was later shown by the same group that discovered its fracture toughness, to have incredible force distribution abilities, with about ten times the ability of steel.


Atomically thin boron nitride

Monolayer boron nitride has fracture strength and Youngs modulus of 70.5 GPa and 0.865 TPa, respectively. Boron nitride also maintains its high Youngs modulus and fracture strengths with increasing thickness.


Transition metal dichalcogenides

2D transition metal dichalcogenides are often used in applications such as flexible and stretchable electronics, where an understanding of their mechanical properties and the operational impact of mechanical changes to the materials is paramount for device performance. Under strain TMDs change their electronic bandgap structure of both the direct gap monolayer and the indirect gap few layer cases indicating applied strain as a tunable parameter. Monolayer MoS2 has a Youngs modulus of 270 GPA and with a maximum strain of 10% before yield.Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ''ACS Nano'' 2011, ''5'' (12), 9703–9709. https://doi.org/10.1021/nn203879f. In comparison, bilayer MoS2 has a Youngs modulus of 200 GPa attributed to interlayer slip. As layer number is increased further the interlayer slip is overshadowed by the bending rigidity with a Youngs modulus of 330 GPa.


Proposed applications

Some applications include electronic devices, photonic and energy harvesting devices, and flexible and transparent substrates. Other applications include on quantum computing qubit devices solar cells, and flexible electronics.


Quantum computing

Theoretical work has predicted the control of the band edges hybridization on some van der Waals heterostructures via electric fields and proposed its usage in quantum bit devices, considering the ZrSe2/SnSe2 heterobilayer as an example. Further experimental work has confirmed these predictions for the case of the MoS2/WS2 heterobilayer.


Magnetic NEMS

2D layered magnetic materials are attractive building blocks for nanoelectromechanical systems (NEMS): while they share high stiffness and strength and low mass with other 2D materials, they are magnetically active. Among the large class of newly emerged 2D layered magnetic materials, of particular interest is few-layer CrI3, whose magnetic ground state consists of antiferromagnetically coupled ferromagnetic (FM) monolayers with out-of-plane easy axis. The interlayer exchange interaction is relatively weak, a magnetic field on the order of 0.5 T in the out-of-plane (𝒛) direction can induce spin-flip transition in bilayer CrI3. Remarkable phenomena and device concepts based on detecting and controlling the interlayer magnetic state have been recently demonstrated, including spin-filter giant magnetoresistance, magnetic switching by electric field or electrostatic doping, and spin transistors. The coupling between the magnetic and mechanical properties in atomically thin materials, the basis for 2D magnetic NEMS, however, remains elusive although NEMS made of thicker magnetic materials or coated with FM metals have been studied.


References

{{reflist, 30em Semiconductors Two-dimensional nanomaterials Condensed matter physics