HOME

TheInfoList



OR:

In
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
, the term single-layer materials or 2D materials refers to
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
line solids consisting of a single layer of atoms. These materials are promising for some applications but remain the focus of research. Single-layer materials derived from single elements generally carry the -ene suffix in their names, e.g.
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
. Single-layer materials that are compounds of two or more elements have -ane or -ide suffixes. 2D materials can generally be categorized as either 2D allotropes of various elements or as compounds (consisting of two or more covalently bonding elements). It is predicted that there are hundreds of stable single-layer materials. The atomic structure and calculated basic properties of these and many other potentially synthesisable single-layer materials, can be found in computational databases. 2D materials can be produced using mainly two approaches: top-down exfoliation and bottom-up synthesis. The exfoliation methods include
sonication image:Sonicator.jpg, A sonicator at the Weizmann Institute of Science during sonicationSonication is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants, ...
, mechanical, hydrothermal, electrochemical, laser-assisted, and microwave-assisted exfoliation.


Single element materials


C: graphene and graphyne

;Graphene
Graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
is a
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
line
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
of
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
in the form of a nearly transparent (to visible light) one atom thick sheet. It is hundreds of times stronger than most
steel Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
s by weight. It has the highest known thermal and electrical conductivity, displaying current densities 1,000,000 times that of
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
. It was first produced in 2004.
Andre Geim Sir Andre Konstantin Geim (; born 21 October 1958; IPA1 pronunciation: ɑːndreɪ gaɪm) is a Russian-born Dutch–British physicist working in England in the School of Physics and Astronomy at the University of Manchester. Geim was awarded th ...
and
Konstantin Novoselov Sir Konstantin Sergeevich Novoselov ( rus, Константи́н Серге́евич Новосёлов, p=kənstɐnʲˈtʲin sʲɪrˈɡʲe(j)ɪvʲɪtɕ nəvɐˈsʲɵləf; born 1974) is a Russian–British physicist. His work on graphene ...
won the 2010
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
"for groundbreaking experiments regarding the two-dimensional material graphene". They first produced it by lifting graphene flakes from bulk graphite with
adhesive tape Adhesive tape is one of many varieties of backing materials coated with an adhesive. Several types of adhesives can be used. Types Pressure-sensitive tape Pressure-sensitive tape, PSA tape, self-stick tape or sticky tape consists of a pre ...
and then transferring them onto a silicon wafer. ;Graphyne
Graphyne Graphyne is an allotrope of carbon. Although it has been studied in theoretical models, it is very difficult to synthesize and only small amounts of uncertain purity have been created. Its structure is one-atom-thick Planar crystallographic gr ...
is another 2-dimensional carbon allotrope whose structure is similar to graphene's. It can be seen as a lattice of
benzene Benzene is an Organic compound, organic chemical compound with the Chemical formula#Molecular formula, molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar hexagonal Ring (chemistry), ring with one hyd ...
rings connected by
acetylene Acetylene (Chemical nomenclature, systematic name: ethyne) is a chemical compound with the formula and structure . It is a hydrocarbon and the simplest alkyne. This colorless gas is widely used as a fuel and a chemical building block. It is u ...
bonds. Depending on the content of the acetylene groups, graphyne can be considered a mixed hybridization, spn, where 1 < n < 2, compared to graphene (pure sp2) and
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Diamond is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of e ...
(pure sp3). First-principle calculations using phonon dispersion curves and ab-initio finite temperature, quantum mechanical molecular dynamics simulations showed graphyne and its
boron nitride Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula B N. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexago ...
analogues to be stable. The existence of graphyne was conjectured before 1960. In 2010, graphdiyne (graphyne with
diacetylene Diacetylene (also known as butadiyne) is the organic compound with the formula or . It is the simplest compound containing two triple bonds. It is first in the series of polyynes, which are of theoretical but not of practical interest. Occurre ...
groups) was synthesized on copper substrates. In 2022 a team claimed to have successfully used
alkyne \ce \ce Acetylene \ce \ce \ce Propyne \ce \ce \ce \ce 1-Butyne In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and n ...
metathesis to synthesise graphyne though this claim is disputed. However, after an investigation the team's paper was retracted by the publication citing fabricated data. Later during 2022 synthesis of multi-layered γ‑graphyne was successfully performed through the polymerization of 1,3,5-tribromo-2,4,6-triethynylbenzene under
Sonogashira coupling The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vi ...
conditions. Recently, it has been claimed to be a competitor for graphene due to the potential of direction-dependent
Dirac cone In physics, Dirac cones are features that occur in some electronic band structures that describe unusual electron transport properties of materials like graphene and topological insulators. In these materials, at energies near the Fermi leve ...
s.


B: borophene

Borophene Borophene is a crystalline atomic monolayer of boron, i.e., it is a two-dimensional allotrope of boron and also known as ''boron sheet''. First predicted by theory in the mid-1990s, different borophene structures were experimentally confirmed ...
is a crystalline atomic
monolayer A monolayer is a single, closely packed layer of entities, commonly atoms or molecules. Monolayers can also be made out of cells. ''Self-assembled monolayers'' form spontaneously on surfaces. Monolayers of layered crystals like graphene and molyb ...
of
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
and is also known as ''boron sheet''. First predicted by theory in the mid-1990s in a freestanding state, and then demonstrated as distinct monoatomic layers on substrates by Zhang et al., different borophene structures were experimentally confirmed in 2015.


Ge: germanene

Germanene Germanene is a material made up of a single layer of germanium atoms. The material is created in a process similar to that of silicene and graphene, in which high vacuum and high temperature are used to deposit a layer of germanium atoms on a su ...
is a two-dimensional allotrope of
germanium Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
with a buckled honeycomb structure. Experimentally synthesized germanene exhibits a honeycomb structure. This
honeycomb A honeycomb is a mass of Triangular prismatic honeycomb#Hexagonal prismatic honeycomb, hexagonal prismatic cells built from beeswax by honey bees in their beehive, nests to contain their brood (eggs, larvae, and pupae) and stores of honey and pol ...
structure consists of two
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is de ...
al sub-lattices that are vertically displaced by 0.2 A from each other.


Si: silicene

Silicene Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Contrary to graphene, silicene is not flat, but has a periodically buckled topology; the coupling between layers in silicene is ...
is a two-dimensional allotrope of
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
, with a hexagonal honeycomb structure similar to that of graphene. Its growth is scaffolded by a pervasive Si/Ag(111) surface alloy beneath the two-dimensional layer.


Sn: stanene

Stanene Stanene is a topological insulator, theoretically predicted by Shoucheng Zhang's group at Stanford, which may display dissipationless currents at its edges near room temperature. It is composed of tin atoms arranged in a single layer, in a manne ...
is a predicted
topological insulator A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material. A topological insulator is an ...
that may display dissipationless currents at its edges near
room temperature Room temperature, colloquially, denotes the range of air temperatures most people find comfortable indoors while dressed in typical clothing. Comfortable temperatures can be extended beyond this range depending on humidity, air circulation, and ...
. It is composed of
tin Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
atoms arranged in a single layer, in a manner similar to graphene. Its buckled structure leads to high reactivity against common air pollutants such as NOx and COx and it is able to trap and dissociate them at low temperature. A structure determination of stanene using low energy electron diffraction has shown ultra-flat stanene on a Cu(111) surface.


Pb: plumbene

Plumbene is a two-dimensional allotrope of
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
, with a hexagonal honeycomb structure similar to that of graphene.


P: phosphorene

Phosphorene is a 2-dimensional, crystalline allotrope of
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
. Its mono-atomic hexagonal structure makes it conceptually similar to graphene. However, phosphorene has substantially different electronic properties; in particular it possesses a nonzero band gap while displaying high electron mobility. This property potentially makes it a better semiconductor than graphene. The synthesis of phosphorene mainly consists of micromechanical cleavage or liquid phase exfoliation methods. The former has a low yield while the latter produce free standing nanosheets in solvent and not on the solid support. The bottom-up approaches like chemical vapor deposition (CVD) are still blank because of its high reactivity. Therefore, in the current scenario, the most effective method for large area fabrication of thin films of phosphorene consists of wet assembly techniques like Langmuir-Blodgett involving the assembly followed by deposition of nanosheets on solid supports.


Sb: antimonene

Antimonene is a two-dimensional allotrope of
antimony Antimony is a chemical element; it has chemical symbol, symbol Sb () and atomic number 51. A lustrous grey metal or metalloid, it is found in nature mainly as the sulfide mineral stibnite (). Antimony compounds have been known since ancient t ...
, with its atoms arranged in a buckled honeycomb lattice. Theoretical calculations predicted that antimonene would be a stable semiconductor in ambient conditions with suitable performance for (opto)electronics. Antimonene was first isolated in 2016 by micromechanical exfoliation and it was found to be very stable under ambient conditions. Its properties make it also a good candidate for biomedical and energy applications. In a study made in 2018, antimonene modified screen-printed electrodes (SPE's) were subjected to a galvanostatic charge/discharge test using a two-electrode approach to characterize their supercapacitive properties. The best configuration observed, which contained 36 nanograms of antimonene in the SPE, showed a specific capacitance of 1578 F g−1 at a current of 14 A g−1. Over 10,000 of these galvanostatic cycles, the capacitance retention values drop to 65% initially after the first 800 cycles, but then remain between 65% and 63% for the remaining 9,200 cycles. The 36 ng antimonene/SPE system also showed an energy density of 20 mW h kg−1 and a power density of 4.8 kW kg−1. These supercapacitive properties indicate that antimonene is a promising electrode material for
supercapacitor alt=Supercapacitor, upright=1.5, Schematic illustration of a supercapacitor upright=1.5, A diagram that shows a hierarchical classification of supercapacitors and capacitors of related types A supercapacitor (SC), also called an ultracapacitor, ...
systems. A more recent study, concerning antimonene modified SPEs shows the inherent ability of antimonene layers to form electrochemically passivated layers to facilitate electroanalytical measurements in oxygenated environments, in which the presence of dissolved oxygens normally hinders the analytical procedure. The same study also depicts the in-situ production of antimonene oxide/PEDOT:PSS nanocomposites as electrocatalytic platforms for the determination of nitroaromatic compounds.


Bi: bismuthene

Bismuthene, the two-dimensional (2D) allotrope of
bismuth Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs nat ...
, was predicted to be a topological insulator. It was predicted that bismuthene retains its topological phase when grown on
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
in 2015. The prediction was successfully realized and synthesized in 2016. At first glance the system is similar to graphene, as the Bi atoms arrange in a honeycomb lattice. However the
bandgap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the ...
is as large as 800mV due to the large
spin–orbit interaction In quantum mechanics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin– ...
(coupling) of the Bi atoms and their interaction with the substrate. Thus, room-temperature applications of the
quantum spin Hall effect The quantum spin Hall state is a state of matter proposed to exist in special, two-dimensional semiconductors that have a quantized spin-Hall conductance and a vanishing charge-Hall conductance. The quantum spin Hall state of matter is the cousin o ...
come into reach. It has been reported to be the largest nontrivial bandgap 2D topological insulator in its natural state. Top-down exfoliation of bismuthene has been reported in various instances with recent works promoting the implementation of bismuthene in the field of electrochemical sensing. Emdadul et al. predicted the mechanical strength and phonon thermal conductivity of monolayer β-bismuthene through atomic-scale analysis. The obtained room temperature (300K) fracture strength is ~4.21 N/m along the armchair direction and ~4.22 N/m along the zigzag direction. At 300 K, its Young's moduli are reported to be ~26.1 N/m and ~25.5 N/m, respectively, along the armchair and zigzag directions. In addition, their predicted phonon thermal conductivity of ~1.3 W/m∙K at 300 K is considerably lower than other analogous 2D honeycombs, making it a promising material for thermoelectric operations.


Au: goldene

On 16 April 2024, scientists from
Linköping University Linköping University (LiU; ) is a public university, public research university based in Linköping, Sweden. Originally established in 1969, it was granted full university status in 1975 and is one of Sweden's largest academic institutions. T ...
in
Sweden Sweden, formally the Kingdom of Sweden, is a Nordic countries, Nordic country located on the Scandinavian Peninsula in Northern Europe. It borders Norway to the west and north, and Finland to the east. At , Sweden is the largest Nordic count ...
reported that they had produced goldene, a single layer of
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
atoms 100nm wide. Lars Hultman, a materials scientist on the team behind the new research, is quoted as saying "we submit that goldene is the first free-standing 2D metal, to the best of our knowledge", meaning that it is not attached to any other material, unlike plumbene and
stanene Stanene is a topological insulator, theoretically predicted by Shoucheng Zhang's group at Stanford, which may display dissipationless currents at its edges near room temperature. It is composed of tin atoms arranged in a single layer, in a manne ...
. Researchers from New York University Abu Dhabi (NYUAD) previously reported to have synthesised Goldene in 2022, however various other scientists have contended that the NYUAD team failed to prove they made a single-layer sheet of gold, as opposed to a multi-layer sheet. Goldene is expected to be used primarily for its optical properties, with applications such as sensing or as a
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
.


Metals

Single and double atom layers of
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
in a two-dimensional film geometry has been demonstrated. These atomically thin platinum films are
epitaxially Epitaxy (prefix ''epi-'' means "on top of”) is a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited cry ...
grown on graphene, which imposes a compressive strain that modifies the surface chemistry of the platinum, while also allowing charge transfer through the graphene. Single atom layers of
palladium Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), ...
with the thickness down to 2.6 Å, and
rhodium Rhodium is a chemical element; it has symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring isot ...
with the thickness of less than 4 Å have been synthesized and characterized with atomic force microscopy and transmission electron microscopy. A 2D titanium formed by
additive manufacturing 3D printing, or additive manufacturing, is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer ...
(
laser powder bed fusion Selective laser melting (SLM) is one of many proprietary names for a metal additive manufacturing (AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM ...
) achieved greater strength than any known material (50% greater than
magnesium alloy Magnesium alloys are mixtures of magnesium (the lightest structural metal) with other metals (called an alloy), often aluminium, zinc, manganese, silicon, copper, rare earths and zirconium. Magnesium alloys have a hexagonal lattice structur ...
WE54). The material was arranged in a tubular lattice with a thin band running inside, merging two complementary lattice structures. This reduced by half the stress at the weakest points in the structure.


2D supracrystals

The supracrystals of 2D materials have been proposed and theoretically simulated. These monolayer crystals are built of supra atomic periodic structures where atoms in the nodes of the lattice are replaced by symmetric complexes. For example, in the hexagonal structure of graphene patterns of 4 or 6 carbon atoms would be arranged hexagonally instead of single atoms, as the repeating node in the
unit cell In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector In mathematics, a unit vector i ...
.


2D alloys

Two-dimensional alloys (or surface alloys) are a single atomic layer of alloy that is incommensurate with the underlying substrate. One example is the 2D ordered alloys of Pb with Sn and with Bi. Surface alloys have been found to scaffold two-dimensional layers, as in the case of
silicene Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Contrary to graphene, silicene is not flat, but has a periodically buckled topology; the coupling between layers in silicene is ...
.


Compounds

*
Boron nitride nanosheet Boron nitride nanosheet is a crystalline form of the hexagonal boron nitride (h-BN), which has a thickness of one atom. Similar in geometry as well as physical and thermal properties to its carbon analog graphene, but has very different chemical ...
* Titanate nanosheet * Borocarbonitrides *
MXenes In materials science, MXenes (pronounced "max-enes") are a class of two-dimensional inorganic compounds along with MBorenes, that consist of atomically thin layers of transition metal carbides, nitrides, or carbonitrides. MXenes accept a variety ...
* 2D silica * Niobium bromide and Niobium chloride ()


Transition metal dichalcogenide monolayers

The most commonly studied two-dimensional transition metal dichalcogenide (TMD) is monolayer
molybdenum disulfide Molybdenum disulfide (or moly) is an inorganic chemistry, inorganic compound composed of molybdenum and sulfur. Its chemical formula is . The compound is classified as a transition metal dichalcogenide. It is a silvery black solid that occurs as ...
(MoS2). Several phases are known, notably the 1T and 2H phases. The naming convention reflects the structure: the 1T phase has one "sheet" (consisting of a layer of S-Mo-S; see figure) per unit cell in a trigonal crystal system, while the 2H phase has two sheets per unit cell in a hexagonal crystal system. The 2H phase is more common, as the 1T phase is
metastable In chemistry and physics, metastability is an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball is onl ...
and spontaneously reverts to 2H without stabilization by additional electron donors (typically surface S vacancies). The 2H phase of MoS2 (
Pearson symbol The Pearson symbol, or Pearson notation, is used in crystallography as a means of describing a crystal structure. It was originated by William Burton Pearson and is used extensively in Pearson's handbook of crystallographic data for intermetallic p ...
hP6; ''Strukturbericht'' designation C7) has space group P63/mmc. Each layer contains Mo surrounded by S in trigonal prismatic coordination. Conversely, the 1T phase (Pearson symbol hP3) has space group P-3m1, and octahedrally-coordinated Mo; with the 1T unit cell containing only one layer, the unit cell has a ''c'' parameter slightly less than half the length of that of the 2H unit cell (5.95 Å and 12.30 Å, respectively). The different crystal structures of the two phases result in differences in their
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or '' ...
as well. The d-orbitals of 2H-MoS2 are split into three bands: d''z''2, dx2-y2,xy, and dxz,yz. Of these, only the dz2 is filled; this combined with the splitting results in a semiconducting material with a bandgap of 1.9eV. 1T-MoS2, on the other hand, has partially filled d-orbitals which give it a
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
lic character. Because the structure consists of in-plane covalent bonds and inter-layer van der Waals interactions, the electronic properties of monolayer TMDs are highly anisotropic. For example, the conductivity of MoS2 in the direction parallel to the planar layer (0.1–1 ohm−1cm−1) is ~2200 times larger than the conductivity perpendicular to the layers. There are also differences between the properties of a monolayer compared to the bulk material: the
Hall mobility In architecture, a hall is a relatively large space enclosed by a roof and walls. In the Iron Age and the Early Middle Ages in northern Europe, a mead hall was where a lord and his retainers ate and also slept. Later in the Middle Ages, the gre ...
at room temperature is drastically lower for monolayer 2H MoS2 (0.1–10 cm2V−1s−1) than for bulk MoS2 (100–500 cm2V−1s−1). This difference arises primarily due to charge traps between the monolayer and the substrate it is deposited on. MoS2 has important applications in (electro)catalysis. As with other two-dimensional materials, properties can be highly geometry-dependent; the surface of MoS2 is catalytically inactive, but the edges can act as active sites for catalyzing reactions. For this reason, device engineering and fabrication may involve considerations for maximizing catalytic surface area, for example by using small nanoparticles rather than large sheets or depositing the sheets vertically rather than horizontally. Catalytic efficiency also depends strongly on the phase: the aforementioned electronic properties of 2H MoS2 make it a poor candidate for catalysis applications, but these issues can be circumvented through a transition to the metallic (1T) phase. The 1T phase has more suitable properties, with a current density of 10 mA/cm2, an overpotential of −187 mV relative to RHE, and a Tafel slope of 43 mV/decade (compared to 94 mV/decade for the 2H phase).


Graphane

While graphene has a hexagonal honeycomb lattice structure with alternating double-bonds emerging from its sp2-bonded carbons, graphane, still maintaining the hexagonal structure, is the fully hydrogenated version of graphene with every sp3-hybrized carbon bonded to a hydrogen (chemical formula of (CH)n). Furthermore, while graphene is planar due to its double-bonded nature, graphane is rugged, with the hexagons adopting different out-of-plane structural conformers like the chair or boat, to allow for the ideal 109.5° angles which reduce ring strain, in a direct analogy to the conformers of cyclohexane. Graphane was first theorized in 2003, was shown to be stable using first principles energy calculations in 2007, and was first experimentally synthesized in 2009. There are various experimental routes available for making graphane, including the top-down approaches of reduction of graphite in solution or hydrogenation of graphite using plasma/hydrogen gas as well as the bottom-up approach of chemical vapor deposition. Graphane is an insulator, with a predicted band gap of 3.5 eV; however, partially hydrogenated graphene is a semi-conductor, with the band gap being controlled by the degree of hydrogenation.


Germanane

Germanane is a single-layer crystal composed of germanium with one hydrogen bonded in the z-direction for each atom. Germanane's structure is similar to graphane, Bulk germanium does not adopt this structure. Germanane is produced in a two-step route starting with calcium germanide. From this material, the
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
(Ca) is removed by de- intercalation with HCl to give a layered solid with the empirical formula GeH. The Ca sites in Zintl-phase CaGe2 interchange with the hydrogen atoms in the HCl solution, producing GeH and CaCl2.


SLSiN

SLSiN (acronym for Single-Layer Silicon Nitride), a novel 2D material introduced as the first post-graphene member of Si3N4, was first discovered computationally in 2020 via density-functional theory based simulations. This new material is inherently 2D, insulator with a band-gap of about 4 eV, and stable both thermodynamically and in terms of lattice dynamics.


Combined surface alloying

Often single-layer materials, specifically elemental allotrops, are connected to the supporting substrate via surface alloys. By now, this phenomenon has been proven via a combination of different measurement techniques for silicene, for which the alloy is difficult to prove by a single technique, and hence has not been expected for a long time. Hence, such scaffolding surface alloys beneath two-dimensional materials can be also expected below other two-dimensional materials, significantly influencing the properties of the two-dimensional layer. During growth, the alloy acts as both, foundation and scaffold for the two-dimensional layer, for which it paves the way.


Organic

Ni3(HITP)2 is an organic, crystalline, structurally tunable electrical conductor with a high surface area. HITP is an organic chemical (2,3,6,7,10,11-hexaamino
triphenylene Triphenylene is an organic compound with the formula (C6H4)3. It's a flat polycyclic aromatic hydrocarbon (PAH) that has a highly symmetric and planar structure consists of four fused benzene rings. Triphenylene has delocalized 18-''π''-electron ...
). It shares graphene's
hexagonal In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is d ...
honeycomb A honeycomb is a mass of Triangular prismatic honeycomb#Hexagonal prismatic honeycomb, hexagonal prismatic cells built from beeswax by honey bees in their beehive, nests to contain their brood (eggs, larvae, and pupae) and stores of honey and pol ...
structure. Multiple layers naturally form perfectly aligned stacks, with identical 2-nm openings at the centers of the hexagons. Room temperature electrical conductivity is ~40  S cm−1, comparable to that of bulk graphite and among the highest for any conducting metal-organic frameworks (MOFs). The temperature dependence of its conductivity is linear at temperatures between 100 K and 500 K, suggesting an unusual charge transport mechanism that has not been previously observed in
organic semiconductor Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals o ...
s. The material was claimed to be the first of a group formed by switching metals and/or organic compounds. The material can be isolated as a powder or a film with conductivity values of 2 and 40 S cm−1, respectively.


Polymer

Using
melamine Melamine is an organic compound with the formula C3H6N6. This white solid is a trimer (chemistry), trimer of cyanamide, with a 1,3,5-Triazine, 1,3,5-triazine skeleton. Like cyanamide, it contains 66% nitrogen by mass, and its derivatives ha ...
(carbon and nitrogen ring structure) as a
monomer A monomer ( ; ''mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or two- or three-dimensional network in a process called polymerization. Classification Chemis ...
, researchers created 2DPA-1, a 2-dimensional polymer sheet held together by
hydrogen bond In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
s. The sheet forms spontaneously in solution, allowing thin films to be spin-coated. The polymer has a yield strength twice that of steel, and it resists six times more deformation force than
bulletproof glass Bulletproof glass, ballistic glass, transparent armor, or bullet-resistant glass is a strong and optically transparent material that is particularly resistant to penetration by projectiles, although, like any other material, it is not completel ...
. It is impermeable to gases and liquids.


Combinations

Single layers of 2D materials can be combined into layered assemblies. For example, bilayer graphene is a material consisting of two layers of
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
. One of the first reports of bilayer graphene was in the seminal 2004 ''
Science Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
'' paper by Geim and colleagues, in which they described devices "which contained just one, two, or three atomic layers". Layered combinations of different 2D materials are generally called van der Waals heterostructures. Twistronics is the study of how the angle (the twist) between layers of two-dimensional materials can change their electrical properties.


Characterization

Microscopy techniques such as
transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
, 3D
electron diffraction Electron diffraction is a generic term for phenomena associated with changes in the direction of electron beams due to elastic interactions with atoms. It occurs due to elastic scattering, when there is no change in the energy of the electrons. ...
,
scanning probe microscopy Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging ...
,
scanning tunneling microscope A scanning tunneling microscope (STM) is a type of scanning probe microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in ...
, and
atomic-force microscopy Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the opti ...
are used to characterize the thickness and size of the 2D materials. Electrical properties and structural properties such as composition and defects are characterized by
Raman spectroscopy Raman spectroscopy () (named after physicist C. V. Raman) is a Spectroscopy, spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Ra ...
,
X-ray diffraction X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. ...
, and
X-ray photoelectron spectroscopy X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique that measures the very topmost 50-60 atoms, 5-10 nm of any surface. It belongs to the family of photoemission spectroscopies in which electro ...
.


Mechanical characterization

The mechanical characterization of 2D materials is difficult due to ambient reactivity and substrate constraints present in many 2D materials. To this end, many mechanical properties are calculated using
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the Motion (physics), physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamics ( ...
simulations or
molecular mechanics Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using Force field (chemi ...
simulations. Experimental mechanical characterization is possible in 2D materials which can survive the conditions of the experimental setup as well as can be deposited on suitable substrates or exist in a free-standing form. Many 2D materials also possess out-of-plane deformation which further convolute measurements.
Nanoindentation Nanoindentation, also called instrumented indentation testing, is a variety of indentation hardness tests applied to small volumes. Indentation is perhaps the most commonly applied means of testing the mechanical properties of materials. The nanoi ...
testing is commonly used to experimentally measure
elastic modulus An elastic modulus (also known as modulus of elasticity (MOE)) is a quantity that describes an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. Definition The elastic modu ...
,
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
, and fracture strength of 2D materials. From these directly measured values, models exist which allow the estimation of
fracture toughness In materials science, fracture toughness is the critical stress intensity factor of a sharp Fracture, crack where propagation of the crack suddenly becomes rapid and unlimited. It is a material property that quantifies its ability to resist crac ...
, work hardening exponent, residual stress, and
yield strength In materials science and engineering, the yield point is the point on a stress–strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and w ...
. These experiments are run using dedicated nanoindentation equipment or an
Atomic Force Microscope Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the diffr ...
(AFM). Nanoindentation experiments are generally run with the 2D material as a linear strip clamped on both ends experiencing indentation by a wedge, or with the 2D material as a circular membrane clamped around the circumference experiencing indentation by a curbed tip in the center. The strip geometry is difficult to prepare but allows for easier analysis due to linear resulting stress fields. The circular drum-like geometry is more commonly used and can be easily prepared by exfoliating samples onto a patterned substrate. The stress applied to the film in the clamping process is referred to as the residual stress. In the case of very thin layers of 2D materials bending stress is generally ignored in indentation measurements, with bending stress becoming relevant in multilayer samples. Elastic modulus and residual stress values can be extracted by determining the linear and cubic portions of the experimental force-displacement curve. The fracture stress of the 2D sheet is extracted from the applied stress at failure of the sample. AFM tip size was found to have little effect on elastic property measurement, but the breaking force was found to have a strong tip size dependence due stress concentration at the apex of the tip. Using these techniques the elastic modulus and yield strength of graphene were found to be 342 N/m and 55 N/m respectively.
Poisson's ratio In materials science and solid mechanics, Poisson's ratio (symbol: ( nu)) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value ...
measurements in 2D materials is generally straightforward. To get a value, a 2D sheet is placed under stress and displacement responses are measured, or an MD calculation is run. The unique structures found in 2D materials have been found to result in auxetic behavior in phosphorene and graphene and a Poisson's ratio of zero in triangular lattice borophene.  
Shear modulus In materials science, shear modulus or modulus of rigidity, denoted by ''G'', or sometimes ''S'' or ''μ'', is a measure of the Elasticity (physics), elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear s ...
measurements of graphene has been extracted by measuring a resonance frequency shift in a double paddle oscillator experiment as well as with MD simulations.
Fracture toughness In materials science, fracture toughness is the critical stress intensity factor of a sharp Fracture, crack where propagation of the crack suddenly becomes rapid and unlimited. It is a material property that quantifies its ability to resist crac ...
of 2D materials in Mode I (KIC) has been measured directly by stretching pre-cracked layers and monitoring crack propagation in real-time. MD simulations as well as molecular mechanics simulations have also been used to calculate fracture toughness in Mode I. In anisotropic materials, such as phosphorene, crack propagation was found to happen preferentially along certain directions. Most 2D materials were found to undergo brittle fracture.


Applications

The major expectation held amongst researchers is that given their exceptional properties, 2D materials will replace conventional semiconductors to deliver a new generation of electronics.


Biological applications

Research on 2D
nanomaterials Nanomaterials describe, in principle, chemical substances or materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science ...
is still in its infancy, with the majority of research focusing on elucidating the unique material characteristics and few reports focusing on
biomedical Biomedicine (also referred to as Western medicine, mainstream medicine or conventional medicine)
applications of 2D
nanomaterial Nanomaterials describe, in principle, chemical substances or materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science ...
s. Nevertheless, recent rapid advances in 2D nanomaterials have raised important yet exciting questions about their interactions with
biological Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of ...
moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Two-dimensional (2D) nanomaterials are ultrathin
nanomaterial Nanomaterials describe, in principle, chemical substances or materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science ...
s with a high degree of
anisotropy Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ve ...
and
chemical A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combin ...
functionality. 2D nanomaterials are highly diverse in terms of their
mechanical Mechanical may refer to: Machine * Machine (mechanical), a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement * Mechanical calculator, a device used to perform the basic operations o ...
,
chemical A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combin ...
, and
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
properties, as well as in size, shape, biocompatibility, and degradability. These diverse properties make 2D nanomaterials suitable for a wide range of applications, including
drug delivery Drug delivery involves various methods and technologies designed to transport pharmaceutical compounds to their target sites helping therapeutic effect. It involves principles related to drug preparation, route of administration, site-specif ...
,
imaging Imaging is the representation or reproduction of an object's form; especially a visual representation (i.e., the formation of an image). Imaging technology is the application of materials and methods to create, preserve, or duplicate images. ...
,
tissue engineering Tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biolo ...
,
biosensor A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
s, and
gas sensor A gas detector is a device that detects the presence of gases in a volume of space, often as part of a safety system. A gas detector can sound an alarm to operators in the area where the leak is occurring, giving them the opportunity to leave. Th ...
s among others. However, their low-dimension nanostructure gives them some common characteristics. For example, 2D nanomaterials are the thinnest materials known, which means that they also possess the highest specific surface areas of all known materials. This characteristic makes these materials invaluable for applications requiring high levels of surface interactions on a small scale. As a result, 2D nanomaterials are being explored for use in
drug delivery Drug delivery involves various methods and technologies designed to transport pharmaceutical compounds to their target sites helping therapeutic effect. It involves principles related to drug preparation, route of administration, site-specif ...
systems, where they can adsorb large numbers of drug molecules and enable superior control over release kinetics. Additionally, their exceptional surface area to volume ratios and typically high modulus values make them useful for improving the
mechanical properties A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one mate ...
of biomedical
nanocomposite Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material. In the ...
s and nanocomposite hydrogels, even at low concentrations. Their extreme thinness has been instrumental for breakthroughs in
biosensing A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell recep ...
and gene sequencing. Moreover, the thinness of these molecules allows them to respond rapidly to external signals such as light, which has led to utility in optical therapies of all kinds, including imaging applications,
photothermal therapy Photothermal therapy (PTT) refers to efforts to use electromagnetic radiation (most often in infrared wavelengths) for the treatment of various medical conditions, including cancer. This neurotherapy is an extension of photodynamic therapy, in which ...
(PTT), and
photodynamic therapy Photodynamic therapy (PDT) is a form of phototherapy involving light and a photosensitizing chemical substance used in conjunction with molecular oxygen to elicit cell death ( phototoxicity). PDT is used in treating acne, wet age-related macula ...
(PDT). Despite the rapid pace of development in the field of 2D nanomaterials, these materials must be carefully evaluated for
biocompatibility Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoin ...
in order to be relevant for
biomedical Biomedicine (also referred to as Western medicine, mainstream medicine or conventional medicine)
applications. The newness of this class of materials means that even the relatively well-established 2D materials like
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
are poorly understood in terms of their physiological interactions with living tissues. Additionally, the complexities of variable particle size and shape, impurities from manufacturing, and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
and
immune In biology, immunity is the state of being insusceptible or resistant to a noxious agent or process, especially a pathogen or infectious disease. Immunity may occur naturally or be produced by prior exposure or immunization. Innate and adaptive ...
interactions have resulted in a patchwork of knowledge on the biocompatibility of these materials.


See also

*
Monolayer A monolayer is a single, closely packed layer of entities, commonly atoms or molecules. Monolayers can also be made out of cells. ''Self-assembled monolayers'' form spontaneously on surfaces. Monolayers of layered crystals like graphene and molyb ...
*
Two-dimensional semiconductor A two-dimensional semiconductor (also known as 2D semiconductor) is a type of natural semiconductor with thicknesses on the atomic scale. Geim and Novoselov et al. initiated the field in 2004 when they reported a new semiconducting material graphen ...
*
Transition metal dichalcogenide monolayers Transition-metal dichalcogenide (TMD or TMDC) monolayers are atomically thin semiconductors of the type MX2, with M a transition metal, transition-metal atom (molybdenum, Mo, tungsten, W, etc.) and X a chalcogen atom (sulphur, S, selenium, Se, o ...


References


External links


"What Are 2D Materials, and Why Do They Interest Scientists?"
in ''Columbia News'' (March 6, 2024)
"Twenty years of 2D materials"
in ''Nature Physics'' (January 16, 2024)


Additional reading

* * * * * * {{cite journal, last1=Kolesnichenko, first1=Pavel, last2=Zhang, first2=Qianhui, last3=Zheng, first3=Changxi, last4=Fuhrer, first4=Michael, last5=Davis, first5=Jeffrey, date=2021, title=Multidimensional analysis of excitonic spectra of monolayers of tungsten disulphide: toward computer-aided identification of structural and environmental perturbations of 2D materials, journal=Machine Learning: Science and Technology, volume=2, issue=2, pages=025021, doi=10.1088/2632-2153/abd87c, doi-access=free, arxiv=2003.01904 * Condensed matter physics Semiconductors Monolayers