Tungsten-182
   HOME

TheInfoList



OR:

Naturally occurring
tungsten Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...
(74W) consists of five
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s. Four are considered
stable A stable is a building in which working animals are kept, especially horses or oxen. The building is usually divided into stalls, and may include storage for equipment and feed. Styles There are many different types of stables in use tod ...
(182W, 183W, 184W, and 186W) and one is slightly
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
, 180W, with an extremely long
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of . On average, two
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
s of 180W occur per gram of natural tungsten per year, so for most practical purposes, 180W can be considered stable. Theoretically, all five naturally occurring isotopes of tungsten can decay into isotopes of hafnium (element 72) by alpha emission, but only 180W has been observed to do so. The other naturally occurring isotopes have not been observed to decay (they are
observationally stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
), and lower bounds for their half-lives have been established: :182W, t1/2 > 7.7×1021 years :183W, t1/2 > 4.1×1021 years :184W, t1/2 > 8.9×1021 years :186W, t1/2 > 8.2×1021 years Thirty-four artificial
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s of tungsten have been characterized with mass numbers ranging from 156 to 194, the most stable of which are 181W with a half-life of 121.2 days, 185W with a half-life of 75.1 days, 188W with a half-life of 69.4 days and 178W with a half-life of 21.6 days. All of the remaining
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
isotopes have half-lives of less than 24 hours, and most of these have half-lives that are less than 8 minutes. Tungsten also has twelve known
meta state A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). "Metastable" describes nuclei whose excited states have half-lives of 10−9 s ...
s, the most stable being 179m1W (t1/2 6.4 minutes).


List of isotopes

, -id=Tungsten-156 , 156W , style="text-align:right" , 74 , style="text-align:right" , 82 , , , β+ , 156Ta , 0+ , , , -id=Tungsten-157 , 157W , style="text-align:right" , 74 , style="text-align:right" , 83 , 156.97886(43)# , 275(40) ms , β+ , 157Ta , (7/2−) , , , -id=Tungsten-158 , 158W , style="text-align:right" , 74 , style="text-align:right" , 84 , 157.97457(32)# , 1.43(18) ms , α , 154Hf , 0+ , , , -id=Tungsten-158m , style="text-indent:1em" , 158mW , colspan="3" style="text-indent:2em" , 1889(8) keV , 143(19) μs , α , 154Hf , (8+) , , , -id=Tungsten-159 , 159W , style="text-align:right" , 74 , style="text-align:right" , 85 , 158.97270(32)# , 8.2(7) ms , α (82%) , 155Hf , 7/2−# , , , -id=Tungsten-160 , rowspan=2, 160W , rowspan=2 style="text-align:right" , 74 , rowspan=2 style="text-align:right" , 86 , rowspan=2, 159.96851(16) , rowspan=2, 90(5) ms , α (87%) , 156Hf , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+ (13%) , 160Ta , -id=Tungsten-161 , rowspan=2, 161W , rowspan=2 style="text-align:right" , 74 , rowspan=2 style="text-align:right" , 87 , rowspan=2, 160.96725(22)# , rowspan=2, 409(16) ms , α (73%) , 157Hf , rowspan=2, 7/2−# , rowspan=2, , rowspan=2, , - , β+ (27%) , 161Ta , -id=Tungsten-162 , rowspan=2, 162W , rowspan=2 style="text-align:right" , 74 , rowspan=2 style="text-align:right" , 88 , rowspan=2, 161.963500(19) , rowspan=2, 1.19(12) s , β+ (54.8%) , 162Ta , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (45.2%) , 158Hf , -id=Tungsten-163 , rowspan=2, 163W , rowspan=2 style="text-align:right" , 74 , rowspan=2 style="text-align:right" , 89 , rowspan=2, 162.962524(63) , rowspan=2, 2.63(9) s , β+ (86%) , 163Ta , rowspan=2, 7/2− , rowspan=2, , rowspan=2, , - , α (14%) , 159Hf , -id=Tungsten-163m , style="text-indent:1em" , 163mW , colspan="3" style="text-indent:2em" , 480.3(7) keV , 154(3) ns , IT , 163W , 13/2+ , , , -id=Tungsten-164 , rowspan=2, 164W , rowspan=2 style="text-align:right" , 74 , rowspan=2 style="text-align:right" , 90 , rowspan=2, 163.958952(10) , rowspan=2, 6.3(2) s , β+ (96.2%) , 164Ta , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (3.8%) , 160Hf , -id=Tungsten-165 , 165W , style="text-align:right" , 74 , style="text-align:right" , 91 , 164.958281(28) , 5.1(5) s , β+ , 165Ta , (5/2−) , , , -id=Tungsten-166 , rowspan=2, 166W , rowspan=2 style="text-align:right" , 74 , rowspan=2 style="text-align:right" , 92 , rowspan=2, 165.955032(10) , rowspan=2, 19.2(6) s , β+ (99.97%) , 166Ta , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (0.035%) , 162Hf , -id=Tungsten-167 , rowspan=2, 167W , rowspan=2 style="text-align:right" , 74 , rowspan=2 style="text-align:right" , 93 , rowspan=2, 166.954811(20) , rowspan=2, 19.9(5) s , β+ (99.96%) , 167Ta , rowspan=2, (5/2−) , rowspan=2, , rowspan=2, , - , α (0.04%) , 163Hf , -id=Tungsten-168 , rowspan=2, 168W , rowspan=2 style="text-align:right" , 74 , rowspan=2 style="text-align:right" , 94 , rowspan=2, 167.951805(14) , rowspan=2, 50.9(19) s , β+ (99.97%) , 168Ta , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (0.032%) , 164Hf , -id=Tungsten-169 , 169W , style="text-align:right" , 74 , style="text-align:right" , 95 , 168.951779(17) , 74(6) s , β+ , 169Ta , 5/2−# , , , -id=Tungsten-170 , 170W , style="text-align:right" , 74 , style="text-align:right" , 96 , 169.949231(14) , 2.42(4) min , β+(99%) , 170Ta , 0+ , , , -id=Tungsten-171 , 171W , style="text-align:right" , 74 , style="text-align:right" , 97 , 170.949451(30) , 2.38(4) min , β+ , 171Ta , (5/2−) , , , -id=Tungsten-172 , 172W , style="text-align:right" , 74 , style="text-align:right" , 98 , 171.947292(30) , 6.6(9) min , β+ , 172Ta , 0+ , , , -id=Tungsten-173 , 173W , style="text-align:right" , 74 , style="text-align:right" , 99 , 172.947689(30) , 7.6(2) min , β+ , 173Ta , 5/2− , , , -id=Tungsten-174 , 174W , style="text-align:right" , 74 , style="text-align:right" , 100 , 173.946079(30) , 33.2(21) min , β+ , 174Ta , 0+ , , , -id=Tungsten-174m1 , style="text-indent:1em" , 174m1W , colspan="3" style="text-indent:2em" , 2267.8(4) keV , 158(3) ns , IT , 174W , 8− , , , -id=Tungsten-174m2 , style="text-indent:1em" , 174m2W , colspan="3" style="text-indent:2em" , 3515.6(4) keV , 128(8) ns , IT , 174W , 12+ , , , -id=Tungsten-175 , 175W , style="text-align:right" , 74 , style="text-align:right" , 101 , 174.946717(30) , 35.2(6) min , β+ , 175Ta , (1/2−) , , , -id=Tungsten-175m , style="text-indent:1em" , 175mW , colspan="3" style="text-indent:2em" , 234.96(15) keV , 216(6) ns , IT , 175W , (7/2+) , , , -id=Tungsten-176 , 176W , style="text-align:right" , 74 , style="text-align:right" , 102 , 175.945634(30) , 2.5(1) h , EC , 176Ta , 0+ , , , -id=Tungsten-177 , 177W , style="text-align:right" , 74 , style="text-align:right" , 103 , 176.946643(30) , 132.4(20) min , β+ , 177Ta , 1/2− , , , -id=Tungsten-178 , 178W , style="text-align:right" , 74 , style="text-align:right" , 104 , 177.945886(16) , 21.6(3) d , EC , 178Ta , 0+ , , , -id=Tungsten-178m , style="text-indent:1em" , 178mW , colspan="3" style="text-indent:2em" , 6572.7(3) keV , 220(10) ns , IT , 178W , 25+ , , , -id=Tungsten-179 , 179W , style="text-align:right" , 74 , style="text-align:right" , 105 , 178.947079(16) , 37.05(16) min , β+ , 179Ta , 7/2− , , , -id=Tungsten-179m1 , rowspan=2 style="text-indent:1em" , 179m1W , rowspan=2 colspan="3" style="text-indent:2em" , 221.91(3) keV , rowspan=2, 6.40(7) min , IT (99.71%) , 179W , rowspan=2, 1/2− , rowspan=2, , rowspan=2, , - , β+ (0.29%) , 179Ta , -id=Tungsten-179m2 , style="text-indent:1em" , 179m2W , colspan="3" style="text-indent:2em" , 1631.90(8) keV , 390(30) ns , IT , 179W , 21/2+ , , , -id=Tungsten-179m3 , style="text-indent:1em" , 179m3W , colspan="3" style="text-indent:2em" , 3348.41(14) keV , 750(80) ns , IT , 179W , 35/2− , , , -id=Tungsten-180 , 180W Primordial
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
, style="text-align:right" , 74 , style="text-align:right" , 106 , 179.9467133(15) , 1.59(5)×1018 y , α , 176Hf , 0+ , 0.0012(1) , , -id=Tungsten-180m1 , style="text-indent:1em" , 180m1W , colspan="3" style="text-indent:2em" , 1529.05(4) keV , 5.47(9) ms , IT , ''180W'' , 8− , , , -id=Tungsten-180m2 , style="text-indent:1em" , 180m2W , colspan="3" style="text-indent:2em" , 3264.7(3) keV , 2.33(19) μs , IT , ''180W'' , 14− , , , -id=Tungsten-181 , 181W , style="text-align:right" , 74 , style="text-align:right" , 107 , 180.9482187(16) , 120.956(19) d , EC , 181Ta , 9/2+ , , , -id=Tungsten-181m1 , style="text-indent:1em" , 181m1W , colspan="3" style="text-indent:2em" , 365.55(13) keV , 14.59(15) μs , IT , 181W , 5/2− , , , -id=Tungsten-181m2 , style="text-indent:1em" , 181m2W , colspan="3" style="text-indent:2em" , 1653.0(3) keV , 200(13) ns , IT , 181W , 21/2+ , , , -id=Tungsten-182 , 182W , style="text-align:right" , 74 , style="text-align:right" , 108 , 181.94820564(80) , colspan=3 align=center,
Observationally Stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
Believed to undergo α decay to 178Hf with a half-life over 7.7×1021 y , 0+ , 0.2650(16) , , -id=Tungsten-182m , style="text-indent:1em" , 182mW , colspan="3" style="text-indent:2em" , 2230.65(14) keV , 1.3(1) μs , IT , 182W , 10+ , , , -id=Tungsten-183 , 183W , style="text-align:right" , 74 , style="text-align:right" , 109 , 182.95022442(80) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 179Hf with a half-life over 6.70×1020 y , 1/2− , 0.1431(4) , , -id=Tungsten-183m , style="text-indent:1em" , 183mW , colspan="3" style="text-indent:2em" , 309.492(4) keV , 5.30(8) s , IT , 183W , 11/2+ , , , -id=Tungsten-184 , 184W , style="text-align:right" , 74 , style="text-align:right" , 110 , 183.95093318(79) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 180Hf with a half-life over 8.9×1021 y , 0+ , 0.3064(2) , , -id=Tungsten-184m1 , style="text-indent:1em" , 184m1W , colspan="3" style="text-indent:2em" , 1284.997(8) keV , 8.33(18) μs , IT , 184W , 5− , , , -id=Tungsten-184m2 , style="text-indent:1em" , 184m2W , colspan="3" style="text-indent:2em" , 4127.7(5) keV , 188(38) ns , IT , 184W , (14+) , , , -id=Tungsten-185 , 185W , style="text-align:right" , 74 , style="text-align:right" , 111 , 184.95342121(79) , 75.1(3) d , β , 185Re , 3/2− , , , -id=Tungsten-185m , style="text-indent:1em" , 185mW , colspan="3" style="text-indent:2em" , 197.383(23) keV , 1.597(4) min , IT , 185W , 11/2+ , , , -id=Tungsten-186 , 186W , style="text-align:right" , 74 , style="text-align:right" , 112 , 185.9543651(13) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 182Hf or ββ decay to ''186Os'' with a half-life over 4.1×1018 y , 0+ , 0.2843(19) , , -id=Tungsten-186m1 , style="text-indent:1em" , 186m1W , colspan="3" style="text-indent:2em" , 1517.2(6) keV , 18(1) μs , IT , 186W , 7− , , , -id=Tungsten-186m2 , style="text-indent:1em" , 186m2W , colspan="3" style="text-indent:2em" , 3542.8(21) keV , 2.0(2) s , IT , 186W , 16+ , , , -id=Tungsten-187 , 187W , style="text-align:right" , 74 , style="text-align:right" , 113 , 186.9571612(13) , 23.809(25) h , β , ''187Re'' , 3/2− , , , -id=Tungsten-187m , style="text-indent:1em" , 187mW , colspan="3" style="text-indent:2em" , 410.06(4) keV , , IT , 187W , 11/2+ , , , -id=Tungsten-188 , 188W , style="text-align:right" , 74 , style="text-align:right" , 114 , 187.9584883(33) , 69.77(5) d , β , 188Re , 0+ , , , -id=Tungsten-188m , style="text-indent:1em" , 188mW , colspan="3" style="text-indent:2em" , 1926.7(8) keV , 109.5(35) ns , IT , 188W , 8− , , , -id=Tungsten-189 , 189W , style="text-align:right" , 74 , style="text-align:right" , 115 , 188.96156(22)# , 11.6(2) min , β , 189Re , 9/2−# , , , -id=Tungsten-190 , 190W , style="text-align:right" , 74 , style="text-align:right" , 116 , 189.963104(38) , 30.0(15) min , β , 190Re , 0+ , , , -id=Tungsten-190m1 , style="text-indent:1em" , 190m1W , colspan="3" style="text-indent:2em" , 1743.6(10) keV , 111(17) ns , IT , 190W , 8+ , , , -id=Tungsten-190m2 , style="text-indent:1em" , 190m2W , colspan="3" style="text-indent:2em" , 1840.6(14) keV , 166(6) μs , IT , 190W , 10− , , , -id=Tungsten-191 , 191W , style="text-align:right" , 74 , style="text-align:right" , 117 , 190.966531(45) , 14# s
300 ns, , , 3/2−# , , , -id=Tungsten-191m , style="text-indent:1em" , 191mW , colspan="3" style="text-indent:2em" , 235(10)# keV , 340(14) ns , IT , 191W , 9/2−# , , , -id=Tungsten-192 , 192W , style="text-align:right" , 74 , style="text-align:right" , 118 , 191.96820(22)# , 40# s
300 ns, , , 0+ , , , -id=Tungsten-193 , 193W , style="text-align:right" , 74 , style="text-align:right" , 119 , 192.97188(22)# , 30# s
300 ns, , , 1/2−# , , , -id=Tungsten-194 , 194W , style="text-align:right" , 74 , style="text-align:right" , 120 , 193.97380(32)# , 20# s
300 ns, , , 0+ , , , -id=Tungsten-195 , 195W , style="text-align:right" , 74 , style="text-align:right" , 121 , 194.97774(32)# , 30# s
160 ns, , , 3/2−# , , , -id=Tungsten-196 , 196W , style="text-align:right" , 74 , style="text-align:right" , 122 , 195.97988(43)# , 25# s
300 ns, , , 0+ , , , -id=Tungsten-197 , 197W , style="text-align:right" , 74 , style="text-align:right" , 123 , 196.98404(43)# , 1# s
300 ns, , , 5/2−# , ,


See also

Daughter products other than tungsten * Isotopes of rhenium *
Isotopes of tantalum Natural tantalum (73Ta) consists of two stable isotopes: 181Ta (99.988%) and 180mTa (0.012%). There are also 35 known artificial radioisotopes, the longest-lived of which are 179Ta with a half-life of 1.82 years, 182Ta with a half-life of 114.43 ...
* Isotopes of hafnium


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Navbox element isotopes Tungsten
Tungsten Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...