Isotopes Of Hafnium
Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation. No other radioisotope has a half-life over 1.87 years. Most isotopes have half-lives under 1 minute. There are also at least 27 nuclear isomers, the most stable of which is 178m2Hf with a half-life of 31 years. All isotopes of hafnium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. List of isotopes , -id=Hafnium-153 , 153Hf , style="text-align:right" , 72 , style="text-align:right" , 81 , 152.97069(32)# , 400# ms 200 ns, , , 1/2+# , , , -id=Hafnium-1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hafnium
Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1922, by Dirk Coster and George de Hevesy. Hafnium is named after , the Latin name for Copenhagen, where it was discovered. Hafnium is used in filaments and electrodes. Some semiconductor fabrication processes use its oxide for integrated circuits at 45 nanometers and smaller feature lengths. Some superalloys used for special applications contain hafnium in combination with niobium, titanium, or tungsten. Hafnium's large neutron capture cross section makes it a good material for neutron absorption in control rods in nuclear power plants, but at the same time requires that it be removed from the neutron-transparent corrosion-resistant zirconium alloys used in nuclear r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electron Capture
Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. This process thereby changes a nuclear proton to a neutron and simultaneously causes the emission of an electron neutrino. : : or when written as a nuclear reaction equation, ^_e + ^_p -> ^_n + ^_ ν_e Since this single emitted neutrino carries the entire decay energy, it has this single characteristic energy. Similarly, the momentum of the neutrino emission causes the daughter atom to recoil with a single characteristic momentum. The resulting daughter nuclide, if it is in an excited state, then transitions to its ground state. Usually, a gamma ray is emitted during this transition, but nuclear de-excitation may also take place by internal conversion. Following capture of an inner electron from the atom, an outer elect ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Hafnium
Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation. No other radioisotope has a half-life over 1.87 years. Most isotopes have half-lives under 1 minute. There are also at least 27 nuclear isomers, the most stable of which is 178m2Hf with a half-life of 31 years. All isotopes of hafnium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. List of isotopes , -id=Hafnium-153 , 153Hf , style="text-align:right" , 72 , style="text-align:right" , 81 , 152.97069(32)# , 400# ms 200 ns, , , 1/2+# , , , -id=Hafnium-1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Ytterbium
Naturally occurring ytterbium (70Yb) is composed of seven stable isotopes:However, all seven of the isotopes are observationally stable, meaning that they are predicted to be radioactive but decay has not been observed yet. 168Yb, 170Yb–174Yb, and 176Yb, with 174Yb being the most abundant (31.83% natural abundance). 30 radioisotopes have been characterized, with the most stable being 169Yb with a half-life of 32.014 days, 175Yb with a half-life of 4.185 days, and 166Yb with a half-life of 56.7 hours. All of the remaining radioactive isotopes have half-lives that are less than 2 hours, and the majority of these have half-lives that are less than 20 minutes. This element also has 18 meta states, with the most stable being 169mYb (t1/2 46 seconds). The isotopes of ytterbium range from 149Yb to 187Yb. The primary decay mode before the most abundant stable isotope, 174Yb is electron capture, and the primary mode after is beta emission. The primary decay products before 174Yb are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Lutetium
Naturally occurring lutetium (71Lu) is composed of one stable isotope 175Lu (97.41% natural abundance) and one long-lived radioisotope, 176Lu with a half-life of 37 billion years (2.59% natural abundance). Forty radioisotopes have been characterized, with the most stable, besides 176Lu, being 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than half an hour. This element also has 18 meta states, with the most stable being 177mLu (t1/2 160.4 days), 174mLu (t1/2 142 days) and 178mLu (t1/2 23.1 minutes). The known isotopes of lutetium range in mass number from 149 to 190. The primary decay mode before the most abundant stable isotope, 175Lu, is electron capture (with some alpha and positron emission), and the primary mode after is beta emission. The primary decay products before 175Lu are isotopes of ytterbium and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotopes Of Tantalum
Natural tantalum (73Ta) consists of two stable isotopes: 181Ta (99.988%) and 180mTa (0.012%). There are also 35 known artificial radioisotopes, the longest-lived of which are 179Ta with a half-life of 1.82 years, 182Ta with a half-life of 114.43 days, 183Ta with a half-life of 5.1 days, and 177Ta with a half-life of 56.56 hours. All other isotopes have half-lives under a day, most under an hour. There are also numerous isomers, the most stable of which (other than 180mTa) is 178m1Ta with a half-life of 2.36 hours. All isotopes and nuclear isomers of tantalum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. Tantalum has been proposed as a "Salted bomb, salting" material for nuclear weapons (cobalt is another, better-known salting material). A jacket of 181Ta, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hafnium-178m2
Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation. No other radioisotope has a half-life over 1.87 years. Most isotopes have half-lives under 1 minute. There are also at least 27 nuclear isomers, the most stable of which is 178m2Hf with a half-life of 31 years. All isotopes of hafnium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. List of isotopes , -id=Hafnium-153 , 153Hf , style="text-align:right" , 72 , style="text-align:right" , 81 , 152.97069(32)# , 400# ms 200 ns, , , 1/2+# , , , -id=Hafnium-1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Observationally Stable
Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuclides do not spontaneously undergo radioactive decay. When these nuclides are referred to in relation to specific elements they are usually called that element's stable isotopes. The 80 elements with one or more stable isotopes comprise a total of 251 nuclides that have not been shown to decay using current equipment. Of these 80 elements, 26 have only one stable isotope and are called monoisotopic. The other 56 have more than one stable isotope. Tin has ten stable isotopes, the largest number of any element. Definition of stability, and naturally occurring nuclides Most naturally occurring nuclides are stable (about 251; see list at the end of this article), and about 35 more (total of 286) are known to be radioactive with long enou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radionuclide
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primordial Nuclide
In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the interstellar medium from which the Solar System was formed, and were formed in, or after, the Big Bang, by nucleosynthesis in stars and supernovae followed by mass ejection, by cosmic ray spallation, and potentially from other processes. They are the stable nuclides plus the long-lived fraction of radionuclides surviving in the primordial solar nebula through planet accretion until the present; 286 such nuclides are known. Stability All of the known 251 stable nuclides, plus another 35 nuclides that have half-lives long enough to have survived from the formation of the Earth, occur as primordial nuclides. These 35 primordial radionuclides represent isotopes of 28 separate elements. Cadmium, tellurium, xenon, neodymium, samarium, osmi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isomeric Transition
A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). "Metastable" describes nuclei whose excited states have half-lives of 10−9 seconds or longer, 100 to 1000 times longer than the half-lives of the excited nuclear states that decay with a "prompt" half life (ordinarily on the order of 10−12 seconds). Some references recommend seconds to distinguish the metastable half life from the normal "prompt" gamma-emission half-life. Occasionally the half-lives are far longer than this and can last minutes, hours, or years. For example, the nuclear isomer survives so long (at least years) that it has never been observed to decay spontaneously. The half-life of a nuclear isomer can even exceed that of the ground state of the same nuclide, as shown by as well as , , , , and multiple holmium isomers. Sometimes, the gamma decay from a metastable state is referred ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |