Hafnium-178m2
   HOME

TheInfoList



OR:

Natural
hafnium Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dm ...
(72Hf) consists of five observationally stable
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
, 174Hf, with a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of years. In addition, there are 34 known
synthetic radioisotope A synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. Frédéric Joliot-Curie and Irène Joliot-Cu ...
s, the most stable of which is 182Hf with a half-life of years. This
extinct radionuclide An extinct radionuclide is a radionuclide that was formed by nucleosynthesis before the formation of the Solar System, about 4.6 billion years ago, but has since decayed to virtually zero abundance and is no longer detectable as a primordial nu ...
is used in
hafnium–tungsten dating Hafnium–tungsten dating is a geochronological radiometric dating method utilizing the radioactive decay system of hafnium-182 to tungsten-182. The half-life of the system is  million years. Today hafnium-182 is an extinct radionuclide, bu ...
to study the chronology of
planetary differentiation In planetary science, planetary differentiation is the process by which the chemical elements of a planetary body accumulate in different areas of that body, due to their physical or chemical behavior (e.g. density and chemical affinities). The pr ...
. No other radioisotope has a half-life over 1.87 years. Most isotopes have half-lives under 1 minute. There are also at least 27
nuclear isomer A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). "Metastable" describes nuclei whose excited states have Half-life, half-lives of ...
s, the most stable of which is 178m2Hf with a half-life of 31 years. All isotopes of hafnium are either radioactive or
observationally stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
, meaning that they are predicted to be radioactive but no actual decay has been observed.


List of isotopes

, -id=Hafnium-153 , 153Hf , style="text-align:right" , 72 , style="text-align:right" , 81 , 152.97069(32)# , 400# ms
200 ns, , , 1/2+# , , , -id=Hafnium-154 , rowspan=2, 154Hf , rowspan=2 style="text-align:right" , 72 , rowspan=2 style="text-align:right" , 82 , rowspan=2, 153.96486(32)# , rowspan=2, 2(1) s , β+ , 154Lu , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (rare) , 150Yb , -id=Hafnium-154m , style="text-indent:1em" , 154mHf , colspan="3" style="text-indent:2em" , 2721(50)# keV , 9(4) μs , IT , 154Hf , (10+) , , , -id=Hafnium-155 , 155Hf , style="text-align:right" , 72 , style="text-align:right" , 83 , 154.96317(32)# , 843(30) ms , β+ , 155Lu , 7/2−# , , , -id=Hafnium-156 , 156Hf , style="text-align:right" , 72 , style="text-align:right" , 84 , 155.95940(16) , 23(1) ms , α , 152Yb , 0+ , , , -id=Hafnium-156m , style="text-indent:1em" , 156mHf , colspan="3" style="text-indent:2em" , 1958.8(10) keV , 480(40) μs , α , 152Yb , (8+) , , , -id=Hafnium-157 , rowspan=2, 157Hf , rowspan=2 style="text-align:right" , 72 , rowspan=2 style="text-align:right" , 85 , rowspan=2, 156.95829(22)# , rowspan=2, 115(1) ms , α (94%) , 153Yb , rowspan=2, 7/2− , rowspan=2, , rowspan=2, , - , β+ (6%) , 157Lu , -id=Hafnium-158 , rowspan=2, 158Hf , rowspan=2 style="text-align:right" , 72 , rowspan=2 style="text-align:right" , 86 , rowspan=2, 157.954801(19) , rowspan=2, 2.85(7) s , β+ (55.7%) , 158Lu , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (44.3%) , 154Yb , -id=Hafnium-159 , rowspan=2, 159Hf , rowspan=2 style="text-align:right" , 72 , rowspan=2 style="text-align:right" , 87 , rowspan=2, 158.953996(18) , rowspan=2, 5.20(10) s , β+ (65%) , 159Lu , rowspan=2, 7/2− , rowspan=2, , rowspan=2, , - , α (35%) , 155Yb , -id=Hafnium-160 , rowspan=2, 160Hf , rowspan=2 style="text-align:right" , 72 , rowspan=2 style="text-align:right" , 88 , rowspan=2, 159.950683(10) , rowspan=2, 13.6(2) s , β+ (99.3%) , 160Lu , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (0.7%) , 156Yb , -id=Hafnium-161 , rowspan=2, 161Hf , rowspan=2 style="text-align:right" , 72 , rowspan=2 style="text-align:right" , 89 , rowspan=2, 160.950278(25) , rowspan=2, 18.4(4) s , β+ (99.71%) , 161Lu , rowspan=2, (7/2−) , rowspan=2, , rowspan=2, , - , α (0.29%) , 157Yb , -id=Hafnium-161m , style="text-indent:1em" , 161mHf , colspan="3" style="text-indent:2em" , 329.0(5) keV , 4.8(2) μs , IT , 161Hf , (13/2+) , , , -id=Hafnium-162 , rowspan=2, 162Hf , rowspan=2 style="text-align:right" , 72 , rowspan=2 style="text-align:right" , 90 , rowspan=2, 161.9472155(96) , rowspan=2, 39.4(9) s , β+ (99.99%) , 162Lu , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (0.008%) , 158Yb , -id=Hafnium-163 , 163Hf , style="text-align:right" , 72 , style="text-align:right" , 91 , 162.947107(28) , 40.0(6) s , β+ , 163Lu , (5/2−) , , , -id=Hafnium-164 , 164Hf , style="text-align:right" , 72 , style="text-align:right" , 92 , 163.944371(17) , 111(8) s , β+ , 164Lu , 0+ , , , -id=Hafnium-165 , 165Hf , style="text-align:right" , 72 , style="text-align:right" , 93 , 164.944567(30) , 76(4) s , β+ , 165Lu , (5/2−) , , , -id=Hafnium-166 , 166Hf , style="text-align:right" , 72 , style="text-align:right" , 94 , 165.942180(30) , 6.77(30) min , β+ , 166Lu , 0+ , , , -id=Hafnium-167 , 167Hf , style="text-align:right" , 72 , style="text-align:right" , 95 , 166.942600(30) , 2.05(5) min , β+ , 167Lu , (5/2)− , , , -id=Hafnium-168 , rowspan=2, 168Hf , rowspan=2 style="text-align:right" , 72 , rowspan=2 style="text-align:right" , 96 , rowspan=2, 167.940568(30) , rowspan=2, 25.95(20) min , EC (98%) , 168Lu , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+ (2%) , 168Lu , -id=Hafnium-169 , 169Hf , style="text-align:right" , 72 , style="text-align:right" , 97 , 168.941259(30) , 3.24(4) min , β+ , 169Lu , (5/2−) , , , -id=Hafnium-170 , 170Hf , style="text-align:right" , 72 , style="text-align:right" , 98 , 169.939609(30) , 16.01(13) h , EC , 170Lu , 0+ , , , -id=Hafnium-171 , 171Hf , style="text-align:right" , 72 , style="text-align:right" , 99 , 170.940492(31) , 12.1(4) h , β+ , 171Lu , 7/2+ , , , -id=Hafnium-171m , style="text-indent:1em" , 171mHf , colspan="3" style="text-indent:2em" , 21.93(9) keV , 29.5(9) s , IT , 171Hf , 1/2− , , , -id=Hafnium-172 , 172Hf , style="text-align:right" , 72 , style="text-align:right" , 100 , 171.939450(26) , 1.87(3) y , EC , 172Lu , 0+ , , , -id=Hafnium-172m , style="text-indent:1em" , 172mHf , colspan="3" style="text-indent:2em" , 2005.84(11) keV , 163(3) ns , IT , 172Hf , (8−) , , , -id=Hafnium-173 , 173Hf , style="text-align:right" , 72 , style="text-align:right" , 101 , 172.940513(30) , 23.6(1) h , β+ , 173Lu , 1/2− , , , -id=Hafnium-173m1 , style="text-indent:1em" , 173m1Hf , colspan="3" style="text-indent:2em" , 107.16(5) keV , 180(8) ns , IT , 173Hf , 5/2− , , , -id=Hafnium-173m2 , style="text-indent:1em" , 173m2Hf , colspan="3" style="text-indent:2em" , 197.47(10) keV , 160(40) ns , IT , 173Hf , 7/2+ , , , -id=Hafnium-174 , 174Hf primordial
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
, style="text-align:right" , 72 , style="text-align:right" , 102 , 173.9400484(24) , , αTheorized to also undergo β+β+ decay to 174Yb , 170Yb , 0+ , 0.0016(12) , , -id=Hafnium-174m1 , style="text-indent:1em" , 174m1Hf , colspan="3" style="text-indent:2em" , 1549.26(4) keV , 138(4) ns , IT , ''174Hf'' , 6+ , , , -id=Hafnium-174m2 , style="text-indent:1em" , 174m2Hf , colspan="3" style="text-indent:2em" , 1797.59(7) keV , 2.39(4) μs , IT , ''174Hf'' , 8− , , , -id=Hafnium-174m3 , style="text-indent:1em" , 174m3Hf , colspan="3" style="text-indent:2em" , 3312.07(6) keV , 3.7(2) μs , IT , ''174Hf'' , 14+ , , , -id=Hafnium-175 , 175Hf , style="text-align:right" , 72 , style="text-align:right" , 103 , 174.9415114(25) , 70.65(19) d , EC , 175Lu , 5/2− , , , -id=Hafnium-175m1 , style="text-indent:1em" , 175m1Hf , colspan="3" style="text-indent:2em" , 125.89(12) keV , 53.7(15) μs , IT , 175Hf , 1/2− , , , -id=Hafnium-175m2 , style="text-indent:1em" , 175m2Hf , colspan="3" style="text-indent:2em" , 1433.41(12) keV , 1.10(8) μs , IT , 175Hf , 19/2+ , , , -id=Hafnium-175m3 , style="text-indent:1em" , 175m3Hf , colspan="3" style="text-indent:2em" , 3015.6(4) keV , 1.21(15) μs , IT , 175Hf , 35/2− , , , -id=Hafnium-175m4 , style="text-indent:1em" , 175m4Hf , colspan="3" style="text-indent:2em" , 4636.2(12) keV , 1.9(1) μs , IT , 175Hf , 45/2+ , , , -id=Hafnium-176 , 176HfUsed in lutetium-hafnium dating , style="text-align:right" , 72 , style="text-align:right" , 104 , 175.9414098(16) , colspan=3 align=center,
Observationally Stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
Believed to undergo α decay to 172Yb , 0+ , 0.0526(70) , , -id=Hafnium-176m1 , style="text-indent:1em" , 176m1Hf , colspan="3" style="text-indent:2em" , 1333.07(7) keV , 9.6(3) μs , IT , 176Hf , 6+ , , , -id=Hafnium-176m2 , style="text-indent:1em" , 176m2Hf , colspan="3" style="text-indent:2em" , 1559.31(9) keV , 9.9(2) μs , IT , 176Hf , 8− , , , -id=Hafnium-176m3 , style="text-indent:1em" , 176m3Hf , colspan="3" style="text-indent:2em" , 2865.8(7) keV , 401(6) μs , IT , 176Hf , 14− , , , -id=Hafnium-176m4 , style="text-indent:1em" , 176m4Hf , colspan="3" style="text-indent:2em" , 4863.6(9) keV , 43(4) μs , IT , 176Hf , 22− , , , -id=Hafnium-177 , 177Hf , style="text-align:right" , 72 , style="text-align:right" , 105 , 176.9432302(15) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 173Yb with a half-life over 1.3×1018 y. , 7/2− , 0.1860(16) , , -id=Hafnium-177m1 , style="text-indent:1em" , 177m1Hf , colspan="3" style="text-indent:2em" , 1315.4502(8) keV , 1.09(5) s , IT , 177Hf , 23/2+ , , , -id=Hafnium-177m2 , style="text-indent:1em" , 177m2Hf , colspan="3" style="text-indent:2em" , 1342.4(10) keV , 55.9(12) μs , IT , 177Hf , (19/2−) , , , -id=Hafnium-177m3 , style="text-indent:1em" , 177m3Hf , colspan="3" style="text-indent:2em" , 2740.02(15) keV , 51.4(5) min , IT , 177Hf , 37/2− , , , -id=Hafnium-178 , 178Hf , style="text-align:right" , 72 , style="text-align:right" , 106 , 177.9437083(15) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 174Yb , 0+ , 0.2728(28) , , -id=Hafnium-178m1 , style="text-indent:1em" , 178m1Hf , colspan="3" style="text-indent:2em" , 1147.416(6) keV , 4.0(2) s , IT , 178Hf , 8− , , , -id=Hafnium-178m2 , style="text-indent:1em" , 178m2Hf , colspan="3" style="text-indent:2em" , 2446.09(8) keV , 31(1) y , IT , 178Hf , 16+ , , , -id=Hafnium-178m3 , style="text-indent:1em" , 178m3Hf , colspan="3" style="text-indent:2em" , 2572.4(3) keV , 68(2) μs , IT , 178Hf , 14− , , , -id=Hafnium-179 , 179Hf , style="text-align:right" , 72 , style="text-align:right" , 107 , 178.9458257(15) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 175Yb , 9/2+ , 0.1362(11) , , -id=Hafnium-179m1 , style="text-indent:1em" , 179m1Hf , colspan="3" style="text-indent:2em" , 375.0352(25) keV , 18.67(4) s , IT , 179Hf , 1/2− , , , -id=Hafnium-179m2 , style="text-indent:1em" , 179m2Hf , colspan="3" style="text-indent:2em" , 1106.412(33) keV , 25.00(17) d , IT , 179Hf , 25/2− , , , -id=Hafnium-179m3 , style="text-indent:1em" , 179m3Hf , colspan="3" style="text-indent:2em" , 3775.2(21) keV , 15(5) μs , IT , 179Hf , (43/2+) , , , -id=Hafnium-180 , 180Hf , style="text-align:right" , 72 , style="text-align:right" , 108 , 179.9465595(15) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 176Yb , 0+ , 0.3508(33) , , -id=Hafnium-180m1 , rowspan=2 style="text-indent:1em" , 180m1Hf , rowspan=2 colspan="3" style="text-indent:2em" , 1141.552(15) keV , rowspan=2, 5.53(2) h , IT (99.69%) , 180Hf , rowspan=2, 8− , rowspan=2, , rowspan=2, , - , β (0.31%) , 180m1Ta , -id=Hafnium-180m2 , style="text-indent:1em" , 180m2Hf , colspan="3" style="text-indent:2em" , 1374.36(4) keV , 570(20) μs , IT , 180Hf , 4− , , , -id=Hafnium-180m3 , style="text-indent:1em" , 180m3Hf , colspan="3" style="text-indent:2em" , 2485.5(5) keV , 0.94(11) μs , IT , 180Hf , 12+ , , , -id=Hafnium-180m4 , style="text-indent:1em" , 180m4Hf , colspan="3" style="text-indent:2em" , 3599.0(10) keV , 90(10) μs , IT , 180Hf , (18−) , , , -id=Hafnium-181 , 181Hf , style="text-align:right" , 72 , style="text-align:right" , 109 , 180.9491108(15) , 42.39(6) d , β , 181Ta , 1/2− , , , -id=Hafnium-181m1 , style="text-indent:1em" , 181m1Hf , colspan="3" style="text-indent:2em" , 595.27(4) keV , 80(5) μs , IT , 181Hf , (9/2+) , , , -id=Hafnium-181m2 , style="text-indent:1em" , 181m2Hf , colspan="3" style="text-indent:2em" , 1043.5(8) keV , ~100 μs , IT , 181Hf , (17/2+) , , , -id=Hafnium-181m3 , style="text-indent:1em" , 181m3Hf , colspan="3" style="text-indent:2em" , 1741.9(13) keV , 1.5(5) ms , IT , 181Hf , (25/2−) , , , -id=Hafnium-182 , 182Hf , style="text-align:right" , 72 , style="text-align:right" , 110 , 181.9505637(66) , 8.90(9)×106 y , β , 182Ta , 0+ , , , -id=Hafnium-182m1 , rowspan=2 style="text-indent:1em" , 182m1Hf , rowspan=2 colspan="3" style="text-indent:2em" , 1172.87(18) keV , rowspan=2, 61.5(15) min , β (54%) , 182Ta , rowspan=2, 8− , rowspan=2, , rowspan=2, , - , IT (46%) , 182Hf , -id=Hafnium-182m2 , style="text-indent:1em" , 182m2Hf , colspan="3" style="text-indent:2em" , 2571.3(12) keV , 40(10) μs , IT , 182Hf , (13+) , , , -id=Hafnium-183 , 183Hf , style="text-align:right" , 72 , style="text-align:right" , 111 , 182.953533(32) , 1.018(2) h , β , 183Ta , (3/2−) , , , -id=Hafnium-183m , style="text-indent:1em" , 183mHf , colspan="3" style="text-indent:2em" , 1464(64) keV , 40(30) s , IT , 183Hf , 27/2−# , , , -id=Hafnium-184 , 184Hf , style="text-align:right" , 72 , style="text-align:right" , 112 , 183.955449(43) , 4.12(5) h , β , 184Ta , 0+ , , , -id=Hafnium-184m1 , style="text-indent:1em" , 184m1Hf , colspan="3" style="text-indent:2em" , 1272.2(4) keV , 48(10) s , IT , 184Hf , 8− , , , -id=Hafnium-184m2 , style="text-indent:1em" , 184m2Hf , colspan="3" style="text-indent:2em" , 2477(10) keV , 16(7) min , , , 15+# , , , -id=Hafnium-185 , 185Hf , style="text-align:right" , 72 , style="text-align:right" , 113 , 184.958862(69) , 3.5(6) min , β , 185Ta , (9/2−) , , , -id=Hafnium-186 , 186Hf , style="text-align:right" , 72 , style="text-align:right" , 114 , 185.960897(55) , 2.6(12) min , β , 186Ta , 0+ , , , -id=Hafnium-186m , style="text-indent:1em" , 186mHf , colspan="3" style="text-indent:2em" , 2968(43) keV , >20 s , , , 17+# , , , -id=Hafnium-187 , 187Hf , style="text-align:right" , 72 , style="text-align:right" , 115 , 186.96457(22)# , 14# s
300 ns, , , 9/2−# , , , -id=Hafnium-187m , style="text-indent:1em" , 187mHf , colspan="3" style="text-indent:2em" , 500(300)# keV , 270(80) ns , IT , 187Hf , 3/2−# , , , -id=Hafnium-188 , 188Hf , style="text-align:right" , 72 , style="text-align:right" , 116 , 187.96690(32)# , 7# s
300 ns, , , 0+ , , , -id=Hafnium-189 , 189Hf , style="text-align:right" , 72 , style="text-align:right" , 117 , 188.97085(32)# , 400# ms
300 ns, , , 3/2−# , , , -id=Hafnium-190 , 190Hf , style="text-align:right" , 72 , style="text-align:right" , 118 , 189.97338(43)# , 600# ms
300 ns, , , 0+ , , , -id=Hafnium-191 , 191Hf , style="text-align:right" , 72 , style="text-align:right" , 119 , , , , , , , , -id=Hafnium-192 , 192Hf , style="text-align:right" , 72 , style="text-align:right" , 120 , , , , , 0+ , ,


See also

Daughter products other than hafnium *
Isotopes of tantalum Natural tantalum (73Ta) consists of two stable isotopes: 181Ta (99.988%) and 180mTa (0.012%). There are also 35 known artificial radioisotopes, the longest-lived of which are 179Ta with a half-life of 1.82 years, 182Ta with a half-life of 114.43 ...
*
Isotopes of lutetium Naturally occurring lutetium (71Lu) is composed of one stable isotope 175Lu (97.41% natural abundance) and one long-lived radioisotope, 176Lu with a half-life of 37 billion years (2.59% natural abundance). Forty radioisotopes have been characteriz ...
*
Isotopes of ytterbium Naturally occurring ytterbium (70Yb) is composed of seven stable isotopes:However, all seven of the isotopes are observationally stable, meaning that they are predicted to be radioactive but decay has not been observed yet. 168Yb, 170Yb–174Y ...


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Navbox element isotopes Hafnium
Hafnium Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dm ...