Signs and symptoms
Tuberculosis may infect any part of the body, but most commonly occurs in the lungs (known as pulmonary tuberculosis). Extrapulmonary TB occurs when tuberculosis develops outside of the lungs, although extrapulmonary TB may coexist with pulmonary TB. General signs and symptoms include fever,Pulmonary
If a tuberculosis infection does become active, it most commonly involves the lungs (in about 90% of cases). Symptoms may includeExtrapulmonary
In 15–20% of active cases, the infection spreads outside the lungs, causing other kinds of TB. These are collectively denoted as extrapulmonary tuberculosis. Extrapulmonary TB occurs more commonly in people with aCauses
Mycobacteria
Transmission
When people with active pulmonary TB cough, sneeze, speak, sing, or spit, they expel infectiousRisk of transmission
People with prolonged, frequent, or close contact with people with TB are at particularly high risk of becoming infected, with an estimated 22% infection rate. A person with active but untreated tuberculosis may infect 10–15 (or more) other people per year. Transmission should occur from only people with active TB – those with latent infection are not thought to be contagious. The probability of transmission from one person to another depends upon several factors, including the number of infectious droplets expelled by the carrier, the effectiveness of ventilation, the duration of exposure, theRisk factors
A number of factors make individuals more susceptible to TB infection and/or disease.Active disease risk
The most important risk factor globally for developing active TB is concurrent HIV infection; 13% of those with TB are also infected with HIV. This is a particular problem in sub-Saharan Africa, where HIV infection rates are high. Of those without HIV infection who are infected with tuberculosis, about 5–10% develop active disease during their lifetimes; in contrast, 30% of those co-infected with HIV develop the active disease. Use of certain medications, such asInfection susceptibility
Tobacco smoking increases the risk of infections (in addition to increasing the risk of active disease and death). Additional factors increasing infection susceptibility include young age.Pathogenesis
Diagnosis
Active tuberculosis
Diagnosing active tuberculosis based only on signs and symptoms is difficult, as is diagnosing the disease in those who have a weakened immune system. A diagnosis of TB should, however, be considered in those with signs of lung disease orLatent tuberculosis
Prevention
Vaccines
The only availablePublic health
Public health campaigns which have focused on overcrowding, public spitting and regular sanitation (including hand washing) during the 1800s helped to either interrupt or slow spread which when combined with contact tracing, isolation and treatment helped to dramatically curb the transmission of both tuberculosis and other airborne diseases which led to the elimination of tuberculosis as a major public health issue in most developed economies. Other risk factors which worsened TB spread such as malnutrition were also ameliorated, but since the emergence of HIV a new population of immunocompromised individuals was available for TB to infect. The World Health Organization (WHO) declared TB a "global health emergency" in 1993, and in 2006, the Stop TB Partnership developed aTreatment
Latent TB
Latent TB is treated with eitherNew onset
The recommended treatment of new-onset pulmonary tuberculosis, , is six months of a combination of antibiotics containing rifampicin, isoniazid,Recurrent disease
If tuberculosis recurs, testing to determine which antibiotics it is sensitive to is important before determining treatment. If multiple drug-resistant TB (MDR-TB) is detected, treatment with at least four effective antibiotics for 18 to 24 months is recommended.Medication administration
Medication resistance
Primary resistance occurs when a person becomes infected with a resistant strain of TB. A person with fully susceptible MTB may develop secondary (acquired) resistance during therapy because of inadequate treatment, not taking the prescribed regimen appropriately (lack of compliance), or using low-quality medication. Drug-resistant TB is a serious public health issue in many developing countries, as its treatment is longer and requires more expensive drugs. MDR-TB is defined as resistance to the two most effective first-line TB drugs: rifampicin and isoniazid. Extensively drug-resistant TB is also resistant to three or more of the six classes of second-line drugs. Totally drug-resistant TB is resistant to all currently used drugs. It was first observed in 2003 in Italy, but not widely reported until 2012, and has also been found in Iran and India. There is some efficacy forPrognosis
Epidemiology
Roughly one-quarter of the world's population has been infected with ''M. tuberculosis'', with new infections occurring in about 1% of the population each year. However, most infections with ''M. tuberculosis'' do not cause disease, and 90–95% of infections remain asymptomatic. In 2012, an estimated 8.6 million chronic cases were active. In 2010, 8.8 million new cases of tuberculosis were diagnosed, and 1.20–1.45 million deaths occurred (most of these occurring inAt-risk groups
Tuberculosis is closely linked to both overcrowding andGeographical epidemiology
The distribution of tuberculosis is not uniform across the globe; about 80% of the population in many African, Caribbean, South Asian, and eastern European countries test positive in tuberculin tests, while only 5–10% of the U.S. population test positive. Hopes of totally controlling the disease have been dramatically dampened because of many factors, including the difficulty of developing an effective vaccine, the expensive and time-consuming diagnostic process, the necessity of many months of treatment, the increase in HIV-associated tuberculosis, and the emergence of drug-resistant cases in the 1980s. In developed countries, tuberculosis is less common and is found mainly in urban areas. In Europe, deaths from TB fell from 500 out of 100,000 in 1850 to 50 out of 100,000 by 1950. Improvements in public health were reducing tuberculosis even before the arrival of antibiotics, although the disease remained a significant threat to public health, such that when the Medical Research Council was formed in Britain in 1913 its initial focus was tuberculosis research. In 2010, rates per 100,000 people in different areas of the world were: globally 178, Africa 332, the Americas 36, Eastern Mediterranean 173, Europe 63, Southeast Asia 278, and Western Pacific 139.Russia
Russia has achieved particularly dramatic progress with a decline in its TB mortality rate—from 61.9 per 100,000 in 1965 to 2.7 per 100,000 in 1993;Global Tuberculosis ControlChina
China has achieved particularly dramatic progress, with about an 80% reduction in its TB mortality rate between 1990 and 2010. The number of new cases has declined by 17% between 2004 and 2014.Africa
In 2007, the country with the highest estimated incidence rate of TB wasIndia
As of 2017, India had the largest total incidence, with an estimated 2,740,000 cases. According to theNorth America
In the United States Native Americans in the United States, Native Americans have a fivefold greater mortality from TB, and racial and ethnic minorities accounted for 84% of all reported TB cases. In the United States, the overall tuberculosis case rate was 3 per 100,000 persons in 2017. In Canada, tuberculosis is still endemic in some rural areas.Western Europe
In 2017, in the United Kingdom, the national average was 9 per 100,000 and the highest incidence rates in Western Europe were 20 per 100,000 in Portugal.History
Society and culture
Names
Tuberculosis has been known by many names from the technical to the familiar. () is a Greek word for consumption, an old term for pulmonary tuberculosis; around 460 BCE, Hippocrates described phthisis as a disease of dry seasons. The abbreviation ''TB'' is short for ''tubercle Bacillus (shape), bacillus''. ''Consumption'' was the most common nineteenth century English word for the disease. The Latin root meaning 'completely' is linked to meaning 'to take up from under'. In ''The Life and Death of Mr Badman'' by John Bunyan, the author calls consumption "the captain of all these men of death." "Great white plague" has also been used.Art and literature
Public health efforts
In 2014, the WHO adopted the "End TB" strategy which aims to reduce TB incidence by 80% and TB deaths by 90% by 2030. The strategy contains a milestone to reduce TB incidence by 20% and TB deaths by 35% by 2020. However, by 2020 only a 9% reduction in incidence per population was achieved globally, with the European region achieving 19% and the African region achieving 16% reductions. Similarly, the number of deaths only fell by 14%, missing the 2020 milestone of a 35% reduction, with some regions making better progress (31% reduction in Europe and 19% in Africa). Correspondingly, also treatment, prevention and funding milestones were missed in 2020, for example only 6.3 million people were started on TB prevention short of the target of 30 million. The World Health Organization (WHO), the Bill and Melinda Gates Foundation, and the U.S. government are subsidizing a fast-acting diagnostic tuberculosis test for use in low- and middle-income countries as of 2012. In addition to being fast-acting, the test can determine if there is resistance to the antibiotic rifampicin which may indicate multi-drug resistant tuberculosis and is accurate in those who are also infected with HIV. Many resource-poor places have access to only sputum microscopy. India had the highest total number of TB cases worldwide in 2010, in part due to poor disease management within the private and public health care sector. Programs such as the Revised National Tuberculosis Control Program are working to reduce TB levels among people receiving public health care. A 2014 Economist Intelligence Unit, EIU-healthcare report finds there is a need to address apathy and urges for increased funding. The report cites among others Lucica Ditui "[TB] is like an orphan. It has been neglected even in countries with a high burden and often forgotten by donors and those investing in health interventions." Slow progress has led to frustration, expressed by the executive director of the Global Fund to Fight AIDS, Tuberculosis and Malaria – Mark Dybul: "we have the tools to end TB as a pandemic and public health threat on the planet, but we are not doing it." Several international organizations are pushing for more transparency in treatment, and more countries are implementing mandatory reporting of cases to the government as of 2014, although adherence is often variable. Commercial treatment providers may at times overprescribe second-line drugs as well as supplementary treatment, promoting demands for further regulations. The government of Brazil provides universal TB care, which reduces this problem. Conversely, falling rates of TB infection may not relate to the number of programs directed at reducing infection rates but may be tied to an increased level of education, income, and health of the population. Costs of the disease, as calculated by the World Bank in 2009 may exceed US$150 billion per year in "high burden" countries. Lack of progress eradicating the disease may also be due to lack of patient follow-up – as among the 250 million migration in China, rural migrants in China. There is insufficient data to show that active contact tracing helps to improve case detection rates for tuberculosis. Interventions such as house-to-house visits, educational leaflets, mass media strategies, educational sessions may increase tuberculosis detection rates in short-term. There is no study that compares new methods of contact tracing such as social network analysis with existing contact tracing methods.Stigma
Slow progress in preventing the disease may in part be due to social stigma, stigma associated with TB. Stigma may be due to the fear of transmission from affected individuals. This stigma may additionally arise due to links between TB and poverty, and in AIDS in Africa, Africa, AIDS. Such stigmatization may be both real and perceived; for example, in Ghana, individuals with TB are banned from attending public gatherings. Stigma towards TB may result in delays in seeking treatment, lower treatment compliance, and family members keeping cause of death secret – allowing the disease to spread further. In contrast, in Russia stigma was associated with increased treatment compliance. TB stigma also affects socially marginalized individuals to a greater degree and varies between regions. One way to decrease stigma may be through the promotion of "TB clubs", where those infected may share experiences and offer support, or through counseling. Some studies have shown TB education programs to be effective in decreasing stigma, and may thus be effective in increasing treatment adherence. Despite this, studies on the relationship between reduced stigma and mortality are lacking , and similar efforts to decrease stigma surrounding AIDS have been minimally effective. Some have claimed the stigma to be worse than the disease, and healthcare providers may unintentionally reinforce stigma, as those with TB are often perceived as difficult or otherwise undesirable. A greater understanding of the social and cultural dimensions of tuberculosis may also help with stigma reduction.Research
The BCG vaccine has limitations, and research to develop new TB vaccines is ongoing. A number of potential candidates are currently in clinical trial, phase I and II clinical trials. Two main approaches are used to attempt to improve the efficacy of available vaccines. One approach involves adding a subunit vaccine to BCG, while the other strategy is attempting to create new and better live vaccines. MVA85A, an example of a subunit vaccine, is in trials in South Africa as of 2006, is based on a genetically modified vaccinia virus. Vaccines are hoped to play a significant role in treatment of both latent and active disease. To encourage further discovery, researchers and policymakers are promoting new economic models of vaccine development as of 2006, including prizes, tax incentives, and advance market commitments. A number of groups, including the Stop TB Partnership, the South African Tuberculosis Vaccine Initiative, and the Aeras Global TB Vaccine Foundation, are involved with research. Among these, the Aeras Global TB Vaccine Foundation received a gift of more than $280 million (US) from the Bill and Melinda Gates Foundation to develop and license an improved vaccine against tuberculosis for use in high burden countries. A number of medications are being studied as of 2012 for multidrug-resistant tuberculosis, including bedaquiline and delamanid. Bedaquiline received U.S. Food and Drug Administration (FDA) approval in late 2012. The safety and effectiveness of these new agents are uncertain as of 2012, because they are based on the results of relatively small studies. However, existing data suggest that patients taking bedaquiline in addition to standard TB therapy are five times more likely to die than those without the new drug, which has resulted in medical journal articles raising health policy questions about why the FDA approved the drug and whether financial ties to the company making bedaquiline influenced physicians' support for its use. Steroids add-on therapy has not shown any benefits for active pulmonary tuberculosis infection.Other animals
Mycobacteria infect many different animals, including birds, fish, rodents, and reptiles. The subspecies ''Mycobacterium tuberculosis'', though, is rarely present in wild animals. An effort to eradicate bovine tuberculosis caused by ''Mycobacterium bovis'' from the cattle and deer herds of New Zealand has been relatively successful. Efforts in Great Britain have been less successful. , tuberculosis appears to be widespread among captive elephants in the US. It is believed that the animals originally acquired the disease from humans, a process called reverse zoonosis. Because the disease can spread through the air to infect both humans and other animals, it is a public health concern affecting circuses and zoos.References
External links
* * *