HOME

TheInfoList



OR:

Tropical cyclogenesis is the development and strengthening of a
tropical cyclone A tropical cyclone is a rapidly rotating storm system with a low-pressure area, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its locat ...
in the
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
. The mechanisms through which
tropical The tropics are the regions of Earth surrounding the equator, where the sun may shine directly overhead. This contrasts with the temperate or polar regions of Earth, where the Sun can never be directly overhead. This is because of Earth's ax ...
cyclogenesis occur are distinctly different from those through which
temperate In geography, the temperate climates of Earth occur in the middle latitudes (approximately 23.5° to 66.5° N/S of the Equator), which span between the tropics and the polar regions of Earth. These zones generally have wider temperature ran ...
cyclogenesis Cyclogenesis is the development or strengthening of Cyclonic rotation, cyclonic circulation in the atmosphere (a low-pressure area). Cyclogenesis is an umbrella term for at least three different processes, all of which result in the development of ...
occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant
convection Convection is single or Multiphase flow, multiphase fluid flow that occurs Spontaneous process, spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoy ...
in a favorable atmospheric environment. Tropical cyclogenesis requires six main factors: sufficiently warm
sea surface temperatures Sea surface temperature (or ocean surface temperature) is the ocean temperature, temperature of ocean water close to the surface. The exact meaning of ''surface'' varies in the literature and in practice. It is usually between and below the sea ...
(at least ), atmospheric instability, high
humidity Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation (meteorology), precipitation, dew, or fog t ...
in the lower to middle levels of the
troposphere The troposphere is the lowest layer of the atmosphere of Earth. It contains 80% of the total mass of the Atmosphere, planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the ...
, enough
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
to develop a low-pressure center, a pre-existing low-level focus or disturbance, and low vertical
wind shear Wind shear (; also written windshear), sometimes referred to as wind gradient, is a difference in wind speed and/or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical ...
. Tropical cyclones tend to develop during the summer, but have been noted in nearly every month in most basins.
Climate Climate is the long-term weather pattern in a region, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteoro ...
cycles such as ENSO and the Madden–Julian oscillation modulate the timing and frequency of tropical cyclone development. The maximum potential intensity is a limit on tropical cyclone intensity which is strongly related to the water temperatures along its path. An average of 86 tropical cyclones of tropical storm intensity form annually worldwide. Of those, 47 reach strengths higher than , and 20 become intense tropical cyclones (at least Category 3 intensity on the Saffir–Simpson scale).


Conditions

There are six main requirements for tropical cyclogenesis: sufficiently warm sea surface temperatures, atmospheric instability, high
humidity Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation (meteorology), precipitation, dew, or fog t ...
in the lower to middle levels of the
troposphere The troposphere is the lowest layer of the atmosphere of Earth. It contains 80% of the total mass of the Atmosphere, planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the ...
, enough
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
to sustain a low-pressure center, a preexisting low-level focus or disturbance, and low vertical
wind shear Wind shear (; also written windshear), sometimes referred to as wind gradient, is a difference in wind speed and/or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical ...
. While these conditions are necessary for tropical cyclone formation, they do not guarantee that a tropical cyclone will form.


Warm waters, instability, and mid-level moisture

Normally, an ocean temperature of spanning through at least a 50-metre depth is considered the minimum to maintain a
tropical cyclone A tropical cyclone is a rapidly rotating storm system with a low-pressure area, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its locat ...
. These warm waters are needed to maintain the warm core that fuels tropical systems. This value is well above 16.1 °C (60.9 °F), the global average surface temperature of the oceans. Tropical cyclones are known to form even when normal conditions are not met. For example, cooler air temperatures at a higher altitude (e.g., at the 500 
hPa The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI). It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is an S ...
level, or 5.9 km) can lead to tropical cyclogenesis at lower water temperatures, as a certain
lapse rate The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. ''Lapse rate'' arises from the word ''lapse'' (in its "becoming less" sense, not its "interruption" sense). In dry air, ...
is required to force the atmosphere to be
unstable In dynamical systems instability means that some of the outputs or internal state (controls), states increase with time, without bounds. Not all systems that are not Stability theory, stable are unstable; systems can also be marginal stability ...
enough for convection. In a moist atmosphere, this lapse rate is 6.5 °C/km, while in an atmosphere with less than 100%
relative humidity Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation (meteorology), precipitation, dew, or fog t ...
, the required lapse rate is 9.8 °C/km. At the 500 hPa level, the air temperature averages within the tropics, but air in the tropics is normally dry at this level, giving the air room to wet-bulb, or cool as it moistens, to a more favorable temperature that can then support convection. A wet-bulb temperature at 500 hPa in a tropical atmosphere of is required to initiate convection if the water temperature is 26.5 °C, and this temperature requirement increases or decreases proportionally by in the sea surface temperature for each 1 °C change at 500 hpa. Under a cold cyclone, 500 hPa temperatures can fall as low as , which can initiate convection even in the driest atmospheres. This also explains why moisture in the mid-levels of the
troposphere The troposphere is the lowest layer of the atmosphere of Earth. It contains 80% of the total mass of the Atmosphere, planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the ...
, roughly at the 500 hPa level, is normally a requirement for development. However, when dry air is found at the same height, temperatures at 500 hPa need to be even colder as dry atmospheres require a greater lapse rate for instability than moist atmospheres. At heights near the
tropopause The tropopause is the atmospheric boundary that demarcates the lowest two layers of the atmosphere of Earth – the troposphere and stratosphere – which occurs approximately above the equatorial regions, and approximately above the polar regi ...
, the 30-year average temperature (as measured in the period encompassing 1961 through 1990) was . A recent example of a
tropical cyclone A tropical cyclone is a rapidly rotating storm system with a low-pressure area, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its locat ...
that maintained itself over cooler waters was
Epsilon Epsilon (, ; uppercase , lowercase or ; ) is the fifth letter of the Greek alphabet, corresponding phonetically to a mid front unrounded vowel or . In the system of Greek numerals it also has the value five. It was derived from the Phoenic ...
of the
2005 Atlantic hurricane season The 2005 Atlantic hurricane season was a record-breaking, devastating and deadly Atlantic hurricane season. It is the second-costliest hurricane season, just behind the 2017 season And 2024. It featured 28 tropical and subtropical storms, ...
.


Role of Maximum Potential Intensity (MPI)

Kerry Emanuel created a
mathematical model A mathematical model is an abstract and concrete, abstract description of a concrete system using mathematics, mathematical concepts and language of mathematics, language. The process of developing a mathematical model is termed ''mathematical m ...
around 1988 to compute the upper limit of tropical cyclone intensity based on sea surface temperature and atmospheric profiles from the latest global model runs. Emanuel's model is called the '' maximum potential intensity'', or MPI. Maps created from this equation show regions where tropical storm and hurricane formation is possible, based upon the
thermodynamics Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
of the atmosphere at the time of the last model run. This does not take into account vertical
wind shear Wind shear (; also written windshear), sometimes referred to as wind gradient, is a difference in wind speed and/or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical ...
.


Coriolis force

A minimum distance of from the
equator The equator is the circle of latitude that divides Earth into the Northern Hemisphere, Northern and Southern Hemisphere, Southern Hemispheres of Earth, hemispheres. It is an imaginary line located at 0 degrees latitude, about in circumferen ...
(about 4.5 degrees from the equator) is normally needed for tropical cyclogenesis. The
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
imparts rotation on the flow and arises as winds begin to flow in toward the lower pressure created by the pre-existing disturbance. In areas with a very small or non-existent Coriolis force (e.g. near the Equator), the only significant atmospheric forces in play are the ''pressure gradient force'' (the pressure difference that causes winds to blow from high to low pressure) and a smaller
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
force; these two alone would not cause the large-scale rotation required for tropical cyclogenesis. The existence of a significant Coriolis force allows the developing vortex to achieve gradient wind balance. This is a balance condition found in mature tropical cyclones that allows
latent heat Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation. ...
to concentrate near the storm core; this results in the maintenance or intensification of the vortex if other development factors are neutral.


Low level disturbance

Whether it be a depression in the
Intertropical Convergence Zone The Intertropical Convergence Zone (ITCZ , or ICZ), known by sailors as the doldrums or the calms because of its monotonous windless weather, is the area where the northeast and the southeast trade winds converge. It encircles Earth near the t ...
(ITCZ), a tropical wave, a broad surface front, or an
outflow boundary An outflow boundary, also known as a gust front, is a storm-scale or mesoscale meteorology, mesoscale boundary separating thunderstorm-cooled air (Outflow (meteorology), outflow) from the surrounding air; similar in effect to a cold front, with ...
, a low-level feature with sufficient
vorticity In continuum mechanics, vorticity is a pseudovector (or axial vector) field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point an ...
and convergence is required to begin tropical cyclogenesis. Even with perfect upper-level conditions and the required atmospheric instability, the lack of a surface focus will prevent the development of organized convection and a surface low. Tropical cyclones can form when smaller circulations within the
Intertropical Convergence Zone The Intertropical Convergence Zone (ITCZ , or ICZ), known by sailors as the doldrums or the calms because of its monotonous windless weather, is the area where the northeast and the southeast trade winds converge. It encircles Earth near the t ...
come together and merge.


Weak vertical wind shear

Vertical wind shear of less than 10 m/s (20  kt, 22 mph) between the surface and the
tropopause The tropopause is the atmospheric boundary that demarcates the lowest two layers of the atmosphere of Earth – the troposphere and stratosphere – which occurs approximately above the equatorial regions, and approximately above the polar regi ...
is favored for tropical cyclone development. Weaker vertical shear makes the storm grow faster vertically into the air, which helps the storm develop and become stronger. If the vertical shear is too strong, the storm cannot rise to its full potential and its energy becomes spread out over too large of an area for the storm to strengthen. Strong wind shear can "blow" the tropical cyclone apart, as it displaces the mid-level warm core from the surface circulation and dries out the mid-levels of the
troposphere The troposphere is the lowest layer of the atmosphere of Earth. It contains 80% of the total mass of the Atmosphere, planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the ...
, halting development. In smaller systems, the development of a significant mesoscale convective complex in a sheared environment can send out a large enough outflow boundary to destroy the surface cyclone. Moderate wind shear can lead to the initial development of the convective complex and surface low similar to the mid-latitudes, but it must diminish to allow tropical cyclogenesis to continue.


Favorable trough interactions

Limited vertical wind shear can be positive for tropical cyclone formation. When an upper-level
trough Trough may refer to: In science * Trough (geology), a long depression less steep than a trench * Trough (meteorology), an elongated region of low atmospheric pressure * Trough (physics), the lowest point on a wave * Trough level (medicine), the l ...
or upper-level low is roughly the same scale as the tropical disturbance, the system can be steered by the upper level system into an area with better diffluence aloft, which can cause further development. Weaker upper cyclones are better candidates for a favorable interaction. There is evidence that weakly sheared tropical cyclones initially develop more rapidly than non-sheared tropical cyclones, although this comes at the cost of a peak in intensity with much weaker wind speeds and higher minimum pressure. This process is also known as ''baroclinic initiation'' of a tropical cyclone. Trailing upper cyclones and upper troughs can cause additional outflow channels and aid in the intensification process. Developing tropical disturbances can help create or deepen upper troughs or upper lows in their wake due to the outflow jet emanating from the developing tropical disturbance/cyclone. There are cases where large, mid-latitude troughs can help with tropical cyclogenesis when an upper-level
jet stream Jet streams are fast flowing, narrow thermal wind, air currents in the Earth's Atmosphere of Earth, atmosphere. The main jet streams are located near the altitude of the tropopause and are westerly winds, flowing west to east around the gl ...
passes to the northwest of the developing system, which will aid divergence aloft and inflow at the surface, spinning up the cyclone. This type of interaction is more often associated with disturbances already in the process of recurvature.


Times of formation

Worldwide, tropical cyclone activity peaks in late summer when water temperatures are warmest. Each basin, however, has its own seasonal patterns. On a worldwide scale, May is the least active month, while September is the most active. In the North Atlantic, a distinct hurricane season occurs from June 1 through November 30, sharply peaking from late August through October. The statistical peak of the North Atlantic hurricane season is September 10. The Northeast Pacific has a broader period of activity, but in a similar time frame to the Atlantic. The Northwest Pacific sees tropical cyclones year-round, with a minimum in February and a peak in early September. In the North Indian basin, storms are most common from April to December, with peaks in May and November. In the Southern Hemisphere, tropical cyclone activity generally occurs between early November and April 30. Southern Hemisphere activity peaks in mid-February to early March. Virtually all the Southern Hemisphere activity is seen from the southern African coast eastward, toward South America. Tropical cyclones are rare events across the south Atlantic Ocean and the far southeastern Pacific Ocean.


Unusual areas of formation


Middle latitudes

Areas farther than 30 degrees from the equator (except in the vicinity of a warm current) are not normally conducive to tropical cyclone formation or strengthening, and areas more than 40 degrees from the equator are often very hostile to such development. The primary limiting factor is water temperatures, although higher shear at increasing latitudes is also a factor. These areas are sometimes frequented by cyclones moving poleward from tropical latitudes. On rare occasions, such as Pablo in 2019, Alex in 2004, Alberto in 1988, and the 1975 Pacific Northwest hurricane, storms may form or strengthen in this region. Typically, tropical cyclones will undergo extratropical transition after recurving polewards, and typically become fully extratropical after reaching 45–50° of latitude. The majority of
extratropical cyclones Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical cyclones are capable ...
tend to restrengthen after completing the transition period.


Near the Equator

Areas within approximately ten degrees latitude of the equator do not experience a significant
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
, a vital ingredient in tropical cyclone formation. However, a few tropical cyclones have been observed forming within five degrees of the equator.


South Atlantic

A combination of
wind shear Wind shear (; also written windshear), sometimes referred to as wind gradient, is a difference in wind speed and/or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical ...
and a lack of tropical disturbances from the
Intertropical Convergence Zone The Intertropical Convergence Zone (ITCZ , or ICZ), known by sailors as the doldrums or the calms because of its monotonous windless weather, is the area where the northeast and the southeast trade winds converge. It encircles Earth near the t ...
(ITCZ) makes it very difficult for the South Atlantic to support tropical activity. At least six tropical cyclones have been observed here, including a weak tropical storm in 1991 off the coast of Africa near
Angola Angola, officially the Republic of Angola, is a country on the west-Central Africa, central coast of Southern Africa. It is the second-largest Portuguese-speaking world, Portuguese-speaking (Lusophone) country in both total area and List of c ...
, Hurricane Catarina in March 2004, which made landfall in Brazil at Category 2 strength, Tropical Storm Anita in March 2010, Tropical Storm Iba in March 2019, Tropical Storm 01Q in February 2021, and Tropical Storm Akará in February 2024.


Mediterranean and Black Seas

Storms that appear similar to tropical cyclones in structure sometimes occur in the
Mediterranean Sea The Mediterranean Sea ( ) is a sea connected to the Atlantic Ocean, surrounded by the Mediterranean basin and almost completely enclosed by land: on the east by the Levant in West Asia, on the north by Anatolia in West Asia and Southern Eur ...
. Notable examples of these " Mediterranean tropical cyclones" include an unnamed system in September 1969, Leucosia in 1982, Celeno in 1995, Cornelia in 1996, Querida in 2006, Rolf in 2011, Qendresa in 2014, Numa in 2017, Ianos in 2020, and Daniel in 2023. However, there is debate on whether these storms were tropical in nature. The
Black Sea The Black Sea is a marginal sea, marginal Mediterranean sea (oceanography), mediterranean sea lying between Europe and Asia, east of the Balkans, south of the East European Plain, west of the Caucasus, and north of Anatolia. It is bound ...
has, on occasion, produced or fueled storms that begin cyclonic rotation, and that appear to be similar to tropical-like cyclones observed in the Mediterranean. Two of these storms reached tropical storm and subtropical storm intensity in August 2002 and September 2005 respectively.


Elsewhere

Tropical cyclogenesis is extremely rare in the far southeastern Pacific Ocean, due to the cold sea-surface temperatures generated by the
Humboldt Current The Humboldt Current, also called the Peru Current, is a cold, low-salinity ocean current that flows north along the western coast of South America.Montecino, Vivian, and Carina B. Lange. "The Humboldt Current System: Ecosystem components and pro ...
, and also due to unfavorable
wind shear Wind shear (; also written windshear), sometimes referred to as wind gradient, is a difference in wind speed and/or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical ...
; as such, Cyclone Yaku in March 2023 is the only known instance of a tropical cyclone impacting western South America. Besides Yaku, there have been several other systems that have been observed developing in the region east of 120°W, which is the official eastern boundary of the South Pacific basin. On May 11, 1983, a tropical depression developed near 110°W, which was thought to be the easternmost forming South Pacific tropical cyclone ever observed in the satellite era. In mid-2015, a rare subtropical cyclone was identified in early May, slightly near
Chile Chile, officially the Republic of Chile, is a country in western South America. It is the southernmost country in the world and the closest to Antarctica, stretching along a narrow strip of land between the Andes, Andes Mountains and the Paci ...
, even further east than the 1983 tropical depression. This system was unofficially dubbed ''Katie'' by researchers.Katie Katie is an English female name. It is a form of Katherine, Kate, Caitlin, Kathleen, Katey and their related forms. It is frequently used on its own. People Sports * Katie Boulter (born 1996), British tennis player * Katie Clark (born 1994), ...
"> Another subtropical cyclone was identified at 77.8 degrees longitude west in May 2018, just off the coast of Chile. This system was unofficially named ''Lexi'' by researchers. A subtropical cyclone was spotted just off the Chilean coast in January 2022, named ''Humberto'' by researchers.
Vortices In fluid dynamics, a vortex (: vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in th ...
have been reported off the coast of
Morocco Morocco, officially the Kingdom of Morocco, is a country in the Maghreb region of North Africa. It has coastlines on the Mediterranean Sea to the north and the Atlantic Ocean to the west, and has land borders with Algeria to Algeria–Morocc ...
in the past. However, it is debatable if they are truly tropical in character. Tropical activity is also extremely rare in the
Great Lakes The Great Lakes, also called the Great Lakes of North America, are a series of large interconnected freshwater lakes spanning the Canada–United States border. The five lakes are Lake Superior, Superior, Lake Michigan, Michigan, Lake Huron, H ...
. However, a storm system that appeared similar to a subtropical or tropical cyclone formed in September 1996 over
Lake Huron Lake Huron ( ) is one of the five Great Lakes of North America. It is shared on the north and east by the Canadian province of Ontario and on the south and west by the U.S. state of Michigan. The name of the lake is derived from early French ex ...
. The system developed an
eye An eye is a sensory organ that allows an organism to perceive visual information. It detects light and converts it into electro-chemical impulses in neurons (neurones). It is part of an organism's visual system. In higher organisms, the ey ...
-like structure in its center, and it may have briefly been a subtropical or tropical cyclone.


Inland intensification

Tropical cyclones typically began to weaken immediately following and sometimes even prior to landfall as they lose the sea fueled heat engine and friction slows the winds. However, under some circumstances, tropical or subtropical cyclones may maintain or even increase their intensity for several hours in what is known as the brown ocean effect. This is most likely to occur with warm moist soils or marshy areas, with warm ground temperatures and flat terrain, and when upper level support remains conducive.


Influence of large-scale climate cycles


Influence of ENSO

El Niño (ENSO) shifts the region (warmer water, up and down welling at different locations, due to winds) in the Pacific and Atlantic where more storms form, resulting in nearly constant accumulated cyclone energy (ACE) values in any one basin. The El Niño event typically decreases hurricane formation in the Atlantic, and far western Pacific and Australian regions, but instead increases the odds in the central North and South Pacific and particular in the western North Pacific typhoon region. Tropical cyclones in the northeastern Pacific and north Atlantic basins are both generated in large part by tropical waves from the same wave train. In the Northwestern Pacific, El Niño shifts the formation of tropical cyclones eastward. During El Niño episodes, tropical cyclones tend to form in the eastern part of the basin, between 150°E and the
International Date Line The International Date Line (IDL) is the line extending between the South and North Poles that is the boundary between one calendar day and the next. It passes through the Pacific Ocean, roughly following the 180.0° line of longitude and de ...
(IDL). Coupled with an increase in activity in the North-Central Pacific (IDL to 140°W) and the South-Central Pacific (east of 160°E), there is a net increase in tropical cyclone development near the International Date Line on both sides of the equator. While there is no linear relationship between the strength of an El Niño and tropical cyclone formation in the Northwestern Pacific, typhoons forming during El Niño years tend to have a longer duration and higher intensities. Tropical cyclogenesis in the Northwestern Pacific is suppressed west of 150°E in the year following an El Niño event.


Influence of the MJO

In general, westerly wind increases associated with the Madden–Julian oscillation lead to increased tropical cyclogenesis in all basins. As the oscillation propagates from west to east, it leads to an eastward march in tropical cyclogenesis with time during that hemisphere's summer season. There is an inverse relationship between tropical cyclone activity in the western Pacific basin and the north Atlantic basin, however. When one basin is active, the other is normally quiet, and vice versa. The main cause appears to be the phase of the Madden–Julian oscillation, or MJO, which is normally in opposite modes between the two basins at any given time.


Influence of equatorial Rossby waves

Research has shown that trapped equatorial
Rossby wave Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby in the Earth's atmosphere in 1939. They ...
packets can increase the likelihood of tropical cyclogenesis in the Pacific Ocean, as they increase the low-level westerly winds within that region, which then leads to greater low-level vorticity. The individual waves can move at approximately 1.8  m/s (4 mph) each, though the group tends to remain stationary.


Seasonal forecasts

Since 1984,
Colorado State University Colorado State University (Colorado State or CSU) is a Public university, public Land-grant university, land-grant research university in Fort Collins, Colorado, United States. It is the flagship university of the Colorado State University Syst ...
has been issuing seasonal tropical cyclone forecasts for the north Atlantic basin, with results that they claim are better than climatology. The university claims to have found several statistical relationships for this basin that appear to allow long range prediction of the number of tropical cyclones. Since then, numerous others have issued seasonal forecasts for worldwide basins. The predictors are related to regional oscillations in the global climate system: the Walker circulation which is related to the
El Niño–Southern Oscillation El Niño–Southern Oscillation (ENSO) is a global climate phenomenon that emerges from variation in winds and sea surface temperatures over the tropical Pacific Ocean. Those variations have an irregular pattern but do have some semblance of cyc ...
; the North Atlantic oscillation (NAO); the Arctic oscillation (AO); and the Pacific North American pattern (PNA).


See also

*
Invest (meteorology) In meteorology, an invest (short for "investigative area") is a designated area of disturbed weather that is monitored for potential tropical cyclone (TC) development. Invests are designated by three separate United States forecast centers: the Na ...
*
Monsoon trough The monsoon trough is a convergence zone between the wind patterns of the southern and northern hemispheres. It is a portion of the Intertropical Convergence Zone in the Western Pacific,Bin WangThe Asian Monsoon.Retrieved 2008-05-03. and is dep ...
* Tropical cyclone forecasting * Saharan air layer - dust blown from Africa over the Atlantic that mitigates hurricane formation in the Atlantic


References


External links


Current AO conditionsCurrent ENSO conditionsCurrent MJO conditionsCurrent NAO conditionsCurrent PNA conditionsTropical Cyclone Heat Potential
{{DEFAULTSORT:Tropical Cyclogenesis Tropical cyclone meteorology