Trinucleotide Repeats
   HOME

TheInfoList



OR:

In
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinians, Augustinian ...
, trinucleotide repeat disorders, a subset of
microsatellite A microsatellite is a tract of repetitive DNA in which certain Sequence motif, DNA motifs (ranging in length from one to six or more base pairs) are repeated, typically 5–50 times. Microsatellites occur at thousands of locations within an organ ...
expansion diseases (also known as repeat expansion disorders), are a set of over 30
genetic disorders A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosome abnormality. Although polygenic disorders are ...
caused by
trinucleotide repeat expansion A trinucleotide repeat expansion, also known as a triplet repeat expansion, is the DNA mutation responsible for causing any type of disorder categorized as a trinucleotide repeat disorder. These are labelled in dynamical genetics as dynamic muta ...
, a kind of
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
in which repeats of three
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s ( trinucleotide repeats) increase in copy numbers until they cross a threshold above which they cause developmental, neurological or neuromuscular disorders. In addition to the expansions of these trinucleotide repeats, expansions of one tetranucleotide (CCTG), five pentanucleotide (ATTCT, TGGAA, TTTTA, TTTCA, and AAGGG), three hexanucleotide (GGCCTG, CCCTCT, and GGGGCC), and one dodecanucleotide (CCCCGCCCCGCG) repeat cause 13 other diseases. Depending on its location, the unstable trinucleotide repeat may cause defects in a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
encoded by a
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
; change the
regulation of gene expression Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are wide ...
; produce a toxic
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
, or lead to production of a toxic protein. In general, the larger the expansion the faster the onset of disease, and the more severe the disease becomes. Trinucleotide repeats are a subset of a larger class of unstable
microsatellite A microsatellite is a tract of repetitive DNA in which certain Sequence motif, DNA motifs (ranging in length from one to six or more base pairs) are repeated, typically 5–50 times. Microsatellites occur at thousands of locations within an organ ...
repeats that occur throughout all
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
s. The first trinucleotide repeat disease to be identified was
fragile X syndrome Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder. The average IQ in males with FXS is under 55, while affected females tend to be in the borderline to normal range, typically around 70–85. Physical features may include a lo ...
, which has since been mapped to the long arm of the
X chromosome The X chromosome is one of the two sex chromosomes in many organisms, including mammals, and is found in both males and females. It is a part of the XY sex-determination system and XO sex-determination system. The X chromosome was named for its u ...
. Patients carry from 230 to 4000 CGG repeats in the gene that causes fragile X syndrome, while unaffected individuals have up to 50 repeats and carriers of the disease have 60 to 230 repeats. The chromosomal instability resulting from this trinucleotide expansion presents clinically as
intellectual disability Intellectual disability (ID), also known as general learning disability (in the United Kingdom), and formerly mental retardation (in the United States), Rosa's Law, Pub. L. 111-256124 Stat. 2643(2010).Archive is a generalized neurodevelopmental ...
, distinctive facial features, and
macroorchidism Macroorchidism is a Genetic disorder, disorder found in males, specifically in children, where a subject has abnormally large testes. The Medical condition, condition is commonly genetics, inherited in connection with fragile X syndrome, fragile X ...
in males. The second DNA-triplet repeat disease, fragile X-E syndrome, was also identified on the X chromosome, but was found to be the result of an expanded CCG repeat. The discovery that trinucleotide repeats could expand during intergenerational transmission and could cause disease was the first evidence that not all disease-causing mutations are stably transmitted from parent to offspring. Trinucleotide repeat disorders and the related microsatellite repeat disorders affect about 1 in 3,000 people worldwide. However, the frequency of occurrence of any one particular repeat sequence disorder varies greatly by ethnic group and geographic location. Many regions of the genome (exons, introns, intergenic regions) normally contain trinucleotide sequences, or repeated sequences of one particular nucleotide, or sequences of 2, 4, 5 or 6 nucleotides. Such repetitive sequences occur at a low level that can be regarded as "normal". Sometimes, a person may have more than the usual number of copies of a repeat sequence associated with a gene, but not enough to alter the function of that gene. These individuals are referred to as "premutation carriers". The frequency of carriers worldwide appears to be 1 in 340 individuals. Some carriers, during the formation of eggs or sperm, may give rise to higher levels of repetition of the repeat they carry. The higher level may then be at a "mutation" level and cause symptoms in their offspring. Three categories of trinucleotide repeat disorders and related microsatellite (4, 5, or 6 repeats) disorders are described by Boivin and Charlet-Berguerand. The first main category these authors discuss is repeat expansions located within the promoter region of a gene or located close to, but upstream of, a promoter region of a gene. These repeats are able to promote localized DNA
epigenetic In biology, epigenetics is the study of changes in gene expression that happen without changes to the DNA sequence. The Greek prefix ''epi-'' (ἐπι- "over, outside of, around") in ''epigenetics'' implies features that are "on top of" or "in ...
changes such as methylation of cytosines. Such epigenetic alterations can inhibit transcription, causing reduced expression of the associated encoded protein. The epigenetic alterations and their effects are described more fully by Barbé and Finkbeiner These authors cite evidence that the age at which an individual begins to experience symptoms, as well as the severity of disease, is determined both by the size of the repeat and the epigenetic state within the repeat and around the repeat. There is often increased methylation at
CpG islands The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG isl ...
near the repeat region, resulting in a closed
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important r ...
state, causing gene downregulation. This first category is designated as "loss of function". The second main category of trinucleotide repeat disorders and related microsatellite disorders involves a toxic RNA gain of function mechanism. In this second type of disorder, large repeat expansions in DNA are transcribed into pathogenic RNAs that form nuclear RNA foci. These foci attract and alter the location and function of RNA binding proteins. This, in turn, causes multiple RNA processing defects that lead to the diverse clinical manifestations of these diseases. The third main category of trinucleotide repeat disorders and related microsatellite disorders is due to the translation of repeat sequenced into pathogenic proteins containing a stretch of repeated amino acids. This results in, variously, a toxic gain of function, a loss of function, a dominant negative effect and/or a mix of these mechanisms for the protein hosting the expansion. Translation of these repeat expansions occurs mostly through two mechanisms. First, there may be translation initiated at the usual AUG or a similar (CUG, GUG, UUG, or ACG) start codon. This results in expression of a pathogenic protein encoded by one particular coding frame. Second, a mechanism named "repeat-associated non-AUG (RAN) translation" uses translation initiation that starts directly within the repeat expansion. This potentially results in expression of three different proteins encoded by the three possible reading frames. Usually, one of the three proteins is more toxic than the other two. Typical of these RAN type expansions are those with the trinucleotide repeat CAG. These often are translated into polyglutamine-containing proteins that form inclusions and are toxic to neuronal cells. Examples of the disorders caused by this mechanism include Huntington's disease and Huntington disease-like 2, spinal-bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy, and spinocerebellar ataxia 1–3, 6–8, and 17. The first main category, the loss of function type with epigenetic contributions, can have repeats located in either a promoter, in 5'untranscribed regions upstream of promoters, or in introns. The second category, toxic RNAs, has repeats located in introns or in a 3' untranslated region of code beyond the stop codon. The third category, largely producing toxic proteins with polyalanines or polyglutamines, has trinucleotide repeats that occur in the exons of the affected genes.


Types

Some of the problems in trinucleotide repeat syndromes result from causing alterations in the
coding region The coding region of a gene, also known as the coding DNA sequence (CDS), is the portion of a gene's DNA or RNA that codes for a protein. Studying the length, composition, regulation, splicing, structures, and functions of coding regions compared ...
of the gene, while others are caused by altered
gene regulation Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are wide ...
. In over half of these disorders, the repeated trinucleotide, or
codon Genetic code is a set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished by the ribosome, which links prote ...
, is CAG. In a coding region, CAG codes for
glutamine Glutamine (symbol Gln or Q) is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral ...
(Q), so CAG repeats result in an expanded
polyglutamine tract A polyglutamine tract or polyQ tract is a portion of a protein consisting of a sequence of several glutamine units. A tract typically consists of about 10 to a few hundred such units. A multitude of genes, in various eukaryotic species (including ...
. These diseases are commonly referred to as polyglutamine (or polyQ) diseases. The repeated codons in the remaining disorders do not code for glutamine, and these can be classified as non-polyQ or non-coding trinucleotide repeat disorders.


Polyglutamine (PolyQ) diseases


Non-coding trinucleotide repeat disorders


Symptoms and signs

, ten neurological and neuromuscular disorders were known to be caused by an increased number of CAG repeats. Although these diseases share the same repeated codon (CAG) and some symptoms, the repeats are found in different, unrelated genes. Except for the CAG repeat expansion in the 5' UTR of ''PPP2R2B'' in SCA12, the expanded CAG repeats are translated into an uninterrupted sequence of glutamine residues, forming a polyQ tract, and the accumulation of polyQ proteins damages key cellular functions such as the
ubiquitin-proteasome system Proteasomes are essential protein complexes responsible for the degradation of proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are found inside all e ...
. A common symptom of polyQ diseases is the progressive degeneration of
nerve cells A neuron (American English), neurone (British English), or nerve cell, is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system. They are located in the nervous system and help to ...
, usually affecting people later in life. However different polyQ-containing proteins damage different subsets of neurons, leading to different symptoms. The non-polyQ diseases or non-coding trinucleotide repeat disorders do not share any specific symptoms and are unlike the PolyQ diseases. In some of these diseases, such as Fragile X syndrome, the pathology is caused by lack of the normal function of the protein encoded by the affected gene. In others, such as Myotonic Dystrophy Type 1, the pathology is caused by a change in protein expression or function mediated through changes in the
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
produced by the expression of the affected gene. In yet others, the pathology is caused by toxic assemblies of RNA in the nuclei of cells.


Genetics

Trinucleotide repeat disorders generally show
genetic anticipation In genetics, anticipation is a phenomenon whereby as a genetic disorder is passed on to the next generation, the symptoms of the genetic disorder become apparent at an earlier age with each generation. In most cases, an increase in the severity o ...
: their severity increases with each successive generation that inherits them. This is likely explained by the addition of CAG repeats in the affected gene as the gene is transmitted from parent to child. For example,
Huntington's disease Huntington's disease (HD), also known as Huntington's chorea, is an incurable neurodegenerative disease that is mostly Genetic disorder#Autosomal dominant, inherited. It typically presents as a triad of progressive psychiatric, cognitive, and ...
occurs when there are more than 35 CAG repeats on the gene coding for the protein HTT. A parent with 35 repeats would be considered normal and would not exhibit any symptoms of the disease. However, that parent's offspring would be at an increased risk of developing Huntington's compared to the general population, as it would take only the addition of one more CAG codon to cause the production of mHTT (mutant HTT), the protein responsible for disease. Huntington's very rarely occurs spontaneously; it is almost always the result of inheriting the defective gene from an affected parent. However, sporadic cases of Huntington's in individuals who have no history of the disease in their families do occur. Among these sporadic cases, there is a higher frequency of individuals with a parent who already has a significant number of CAG repeats in their ''HTT'' gene, especially those whose repeats approach the number (36) required for the disease to manifest. Each successive generation in a Huntington's-affected family may add additional CAG repeats, and the higher the number of repeats, the more severe the disease and the earlier its onset. As a result, families that have had Huntington's for many generations show an earlier age of disease onset and faster disease progression.


Non-trinucleotide expansions

The majority of diseases caused by expansions of simple DNA repeats involve trinucleotide repeats, but tetra-, penta- and dodecanucleotide repeat expansions are also known that cause disease. For any specific hereditary disorder, only one repeat expands in a particular gene.


Mechanism

Triplet expansion is caused by ''slippage'' during
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...
or during
DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
synthesis. Because the tandem repeats have identical sequence to one another,
base pair A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
ing between two DNA strands can take place at multiple points along the sequence. This may lead to the formation of 'loop out' structures during DNA replication or DNA repair synthesis. This may lead to repeated copying of the repeated sequence, expanding the number of repeats. Additional mechanisms involving hybrid RNA:DNA intermediates have been proposed.


Diagnosis


See also

*
C9orf72 C9orf72 (chromosome 9 open reading frame 72) is a protein which in humans is encoded by the gene ''C9orf72''. The human ''C9orf72'' gene is located on the short (p) arm of chromosome 9 open reading frame 72, from base pair 27,546,546 to base pa ...
*
RAN translation Repeat Associated Non-AUG translation, or RAN translation, is an irregular mode of mRNA translation that can occur in eukaryotic cells. Mechanism For the majority of eukaryotic messenger RNAs (mRNAs), translation initiates from a methionine-enc ...


References


External links

*
GeneReviews/NCBI/NIH/UW entry on DRPLA



Genetics Home Reference
{{Trinucleotide repeat disorders Genetic disorders by mechanism Huntington's disease