HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the trihexagonal tiling is one of 11 uniform tilings of the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions ...
by regular polygons. See in particular Theorem 2.1.3, p. 59 (classification of uniform tilings); Figure 2.1.5, p.63 (illustration of this tiling), Theorem 2.9.1, p. 103 (classification of colored tilings), Figure 2.9.2, p. 105 (illustration of colored tilings), Figure 2.5.3(d), p. 83 (topologically equivalent star tiling), and Exercise 4.1.3, p. 171 (topological equivalence of trihexagonal and two-triangle tilings). It consists of
equilateral triangle In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
s and
regular hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
s, arranged so that each hexagon is surrounded by triangles and vice versa. The name derives from the fact that it combines a regular
hexagonal tiling In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling). English mathema ...
and a regular
triangular tiling In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilater ...
. Two hexagons and two triangles alternate around each
vertex Vertex, vertices or vertexes may refer to: Science and technology Mathematics and computer science *Vertex (geometry), a point where two or more curves, lines, or edges meet *Vertex (computer graphics), a data structure that describes the position ...
, and its edges form an infinite arrangement of lines. Its
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
is the rhombille tiling. This pattern, and its place in the classification of uniform tilings, was already known to Johannes Kepler in his 1619 book '' Harmonices Mundi''. The pattern has long been used in Japanese
basketry Basket weaving (also basketry or basket making) is the process of weaving or sewing pliable materials into three-dimensional artifacts, such as baskets, mats, mesh bags or even furniture. Craftspeople and artists specialized in making baskets ...
, where it is called kagome. The Japanese term for this pattern has been taken up in physics, where it is called a Kagome lattice. It occurs also in the crystal structures of certain minerals. Conway calls it a hexadeltille, combining alternate elements from a
hexagonal tiling In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling). English mathema ...
(hextille) and
triangular tiling In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilater ...
(deltille).


Kagome

Kagome ( ja, 籠目) is a traditional Japanese woven bamboo pattern; its name is composed from the words ''kago'', meaning "basket", and ''me'', meaning "eye(s)", referring to the pattern of holes in a woven basket. It is a woven
arrangement In music, an arrangement is a musical adaptation of an existing composition. Differences from the original composition may include reharmonization, melodic paraphrasing, orchestration, or formal development. Arranging differs from orchestr ...
of
lath A lath or slat is a thin, narrow strip of straight-grained wood used under roof shingles or tiles, on lath and plaster walls and ceilings to hold plaster, and in lattice and trellis work. ''Lath'' has expanded to mean any type of backing ma ...
s composed of interlaced triangles such that each point where two laths cross has four neighboring points, forming the pattern of a trihexagonal tiling. The woven process gives the Kagome a chiral
wallpaper group A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. To a given wallpaper there corresponds a group of such congruent transformat ...
symmetry, p6, (632).


Kagome lattice

The term kagome lattice was coined by Japanese physicist Kôdi Husimi, and first appeared in a 1951 paper by his assistant Ichirō Shōji. The kagome lattice in this sense consists of the vertices and edges of the trihexagonal tiling. Despite the name, these crossing points do not form a mathematical lattice. A related three dimensional structure formed by the vertices and edges of the quarter cubic honeycomb, filling space by regular
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
and truncated tetrahedra, has been called a ''hyper-kagome lattice''. It is represented by the vertices and edges of the quarter cubic honeycomb, filling space by regular
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
and truncated tetrahedra. It contains four sets of parallel planes of points and lines, each plane being a two dimensional kagome lattice. A second expression in three dimensions has parallel layers of two dimensional lattices and is called an ''orthorhombic-kagome lattice''. The trihexagonal prismatic honeycomb represents its edges and vertices. Some
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. ...
s, namely jarosites and herbertsmithite, contain two-dimensional layers or three-dimensional kagome lattice arrangement of
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas ...
s in their
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns t ...
. These minerals display novel physical properties connected with geometrically frustrated magnetism. For instance, the spin arrangement of the magnetic ions in Co3V2O8 rests in a kagome lattice which exhibits fascinating magnetic behavior at low temperatures. Quantum magnets realized on Kagome metals have been discovered to exhibit many unexpected electronic and magnetic phenomena. It is also proposed that SYK behavior can be observed in two dimensional kagome lattice with impurities. The term is much in use nowadays in the scientific literature, especially by theorists studying the magnetic properties of a theoretical kagome lattice. See also: Kagome crests.


Symmetry

The trihexagonal tiling has
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mor ...
of r, or
Coxeter diagram Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
, , symbolizing the fact that it is a rectified
hexagonal tiling In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling). English mathema ...
, . Its
symmetries Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
can be described by the
wallpaper group A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. To a given wallpaper there corresponds a group of such congruent transformat ...
p6mm, (*632), and the tiling can be derived as a
Wythoff construction In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction. Construction process ...
within the reflectional
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each o ...
s of this group. The trihexagonal tiling is a
quasiregular tiling In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the ...
, alternating two types of polygons, with vertex configuration (3.6)2. It is also a uniform tiling, one of eight derived from the regular hexagonal tiling.


Uniform colorings

There are two distinct uniform colorings of a trihexagonal tiling. Naming the colors by indices on the 4 faces around a vertex (3.6.3.6): 1212, 1232. The second is called a cantic
hexagonal tiling In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling). English mathema ...
, h2, with two colors of triangles, existing in p3m1 (*333) symmetry.


Circle packing

The trihexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 4 other circles in the packing (
kissing number In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement o ...
). :


Topologically equivalent tilings

The ''trihexagonal tiling'' can be geometrically distorted into topologically equivalent tilings of lower symmetry. In these variants of the tiling, the edges do not necessarily line up to form straight lines.


Related quasiregular tilings

The ''trihexagonal tiling'' exists in a sequence of symmetries of quasiregular tilings with vertex configurations (3.''n'')2, progressing from tilings of the sphere to the Euclidean plane and into the hyperbolic plane. With
orbifold notation In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advant ...
symmetry of *''n''32 all of these tilings are
wythoff construction In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction. Construction process ...
within a
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each o ...
of symmetry, with generator points at the right angle corner of the domain.


Related regular complex apeirogons

There are 2 regular complex apeirogons, sharing the vertices of the trihexagonal tiling. Regular complex apeirogons have vertices and edges, where edges can contain 2 or more vertices. Regular apeirogons ''p'r'' are constrained by: 1/''p'' + 2/''q'' + 1/''r'' = 1. Edges have ''p'' vertices arranged like a
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
, and
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
s are ''r''-gonal. The first is made of triangular edges, two around every vertex, second has hexagonal edges, two around every vertex.


See also

*
Percolation threshold The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a ...
* Kagome crest *
Star of David The Star of David (). is a generally recognized symbol of both Jewish identity and Judaism. Its shape is that of a hexagram: the compound of two equilateral triangles. A derivation of the '' seal of Solomon'', which was used for decorat ...
* Trihexagonal prismatic honeycomb * Cyclotruncated simplectic honeycomb * List of uniform tilings


References


Further reading

* {{Tessellation Euclidean tilings Isogonal tilings Isotoxal tilings Semiregular tilings Quasiregular polyhedra Japanese bamboowork Crystallography