Transverse Direction
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the Position (geometry), position of the Point (geometry), points or other geometric elements on a manifold such as ...
. These are *the point's distance from a reference point called the ''pole'', and *the point's direction from the pole relative to the direction of the ''polar axis'', a ray drawn from the pole. The distance from the pole is called the ''radial coordinate'', ''radial distance'' or simply ''radius'', and the angle is called the ''angular coordinate'', ''polar angle'', or ''
azimuth An azimuth (; from ) is the horizontal angle from a cardinal direction, most commonly north, in a local or observer-centric spherical coordinate system. Mathematically, the relative position vector from an observer ( origin) to a point ...
''. The pole is analogous to the origin in a
Cartesian coordinate system In geometry, a Cartesian coordinate system (, ) in a plane (geometry), plane is a coordinate system that specifies each point (geometry), point uniquely by a pair of real numbers called ''coordinates'', which are the positive and negative number ...
. Polar coordinates are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point in a plane, such as
spiral In mathematics, a spiral is a curve which emanates from a point, moving further away as it revolves around the point. It is a subtype of whorled patterns, a broad group that also includes concentric objects. Two-dimensional A two-dimension ...
s. Planar physical systems with bodies moving around a central point, or phenomena originating from a central point, are often simpler and more intuitive to model using polar coordinates. The polar coordinate system is extended to three dimensions in two ways: the
cylindrical coordinate system A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions around a main axis (a chosen directed line) and an auxiliary axis (a reference ray). The three cylindrical coordinates are: the point perpen ...
adds a second distance coordinate, and the
spherical coordinate system In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are * the radial distance along the line connecting the point to a fixed point ...
adds a second angular coordinate.
Grégoire de Saint-Vincent Grégoire de Saint-Vincent () - in Latin : Gregorius a Sancto Vincentio, in Dutch : Gregorius van St-Vincent - (8 September 1584 Bruges – 5 June 1667 Ghent) was a Flemish Jesuit and mathematician. He is remembered for his work on quadrature of ...
and
Bonaventura Cavalieri Bonaventura Francesco Cavalieri (; 1598 – 30 November 1647) was an Italian mathematician and a Jesuati, Jesuate. He is known for his work on the problems of optics and motion (physics), motion, work on indivisibles, the precursors of infin ...
independently introduced the system's concepts in the mid-17th century, though the actual term ''polar coordinates'' has been attributed to Gregorio Fontana in the 18th century. The initial motivation for introducing the polar system was the study of
circular Circular may refer to: * The shape of a circle * ''Circular'' (album), a 2006 album by Spanish singer Vega * Circular letter (disambiguation), a document addressed to many destinations ** Government circular, a written statement of government pol ...
and
orbital motion In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an obj ...
.


History

The concepts of angle and radius were already used by ancient peoples of the first millennium BC. The Greek astronomer and
astrologer Astrology is a range of Divination, divinatory practices, recognized as pseudoscientific since the 18th century, that propose that information about human affairs and terrestrial events may be discerned by studying the apparent positions ...
Hipparchus Hipparchus (; , ;  BC) was a Ancient Greek astronomy, Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equinoxes. Hippar ...
(190–120 BC) created a table of chord functions giving the length of the chord for each angle, and there are references to his using polar coordinates in establishing stellar positions. In ''
On Spirals ''On Spirals'' () is a treatise by Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, S ...
'',
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
describes the
Archimedean spiral The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Ancient Greece, Greek mathematician Archimedes. The term ''Archimedean spiral'' is sometimes used to refer to the more gene ...
, a function whose radius depends on the angle. The Greek work, however, did not extend to a full coordinate system. From the 8th century AD onward, astronomers developed methods for approximating and calculating the direction to
Mecca Mecca, officially Makkah al-Mukarramah, is the capital of Mecca Province in the Hejaz region of western Saudi Arabia; it is the Holiest sites in Islam, holiest city in Islam. It is inland from Jeddah on the Red Sea, in a narrow valley above ...
(
qibla The qibla () is the direction towards the Kaaba in the Great Mosque of Mecca, Sacred Mosque in Mecca, which is used by Muslims in various religious contexts, particularly the direction of prayer for the salah. In Islam, the Kaaba is believed to ...
)—and its distance—from any location on the Earth. From the 9th century onward they were using
spherical trigonometry Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the edge (geometry), sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, ge ...
and
map projection In cartography, a map projection is any of a broad set of Transformation (function) , transformations employed to represent the curved two-dimensional Surface (mathematics), surface of a globe on a Plane (mathematics), plane. In a map projection, ...
methods to determine these quantities accurately. The calculation is essentially the conversion of the equatorial polar coordinates of Mecca (i.e. its
longitude Longitude (, ) is a geographic coordinate that specifies the east- west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lett ...
and
latitude In geography, latitude is a geographic coordinate system, geographic coordinate that specifies the north-south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at t ...
) to its polar coordinates (i.e. its qibla and distance) relative to a system whose reference meridian is the
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Discussion Any arc of a great circle is a geodesic of the sphere, so that great circles in spher ...
through the given location and the Earth's poles and whose polar axis is the line through the location and its
antipodal point In mathematics, two points of a sphere (or n-sphere, including a circle) are called antipodal or diametrically opposite if they are the endpoints of a diameter, a straight line segment between two points on a sphere and passing through its cen ...
. There are various accounts of the introduction of polar coordinates as part of a formal coordinate system. The full history of the subject is described in
Harvard Harvard University is a private Ivy League research university in Cambridge, Massachusetts, United States. Founded in 1636 and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of higher lear ...
professor Julian Lowell Coolidge's ''Origin of Polar Coordinates.'' Grégoire de Saint-Vincent and Bonaventura Cavalieri independently introduced the concepts in the mid-seventeenth century. Saint-Vincent wrote about them privately in 1625 and published his work in 1647, while Cavalieri published his in 1635 with a corrected version appearing in 1653. Cavalieri first used polar coordinates to solve a problem relating to the area within an
Archimedean spiral The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Ancient Greece, Greek mathematician Archimedes. The term ''Archimedean spiral'' is sometimes used to refer to the more gene ...
.
Blaise Pascal Blaise Pascal (19June 162319August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer. Pascal was a child prodigy who was educated by his father, a tax collector in Rouen. His earliest ...
subsequently used polar coordinates to calculate the length of parabolic arcs. In ''
Method of Fluxions ''Method of Fluxions'' () is a mathematical treatise by Sir Isaac Newton which served as the earliest written formulation of modern calculus. The book was completed in 1671 and posthumously published in 1736. Background Fluxion is Newton's term ...
'' (written 1671, published 1736), Sir
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
examined the transformations between polar coordinates, which he referred to as the "Seventh Manner; For Spirals", and nine other coordinate systems. In the journal ''
Acta Eruditorum (from Latin: ''Acts of the Erudite'') was the first scientific journal of the German-speaking lands of Europe, published from 1682 to 1782. History ''Acta Eruditorum'' was founded in 1682 in Leipzig by Otto Mencke, who became its first edit ...
'' (1691),
Jacob Bernoulli Jacob Bernoulli (also known as James in English or Jacques in French; – 16 August 1705) was a Swiss mathematician. He sided with Gottfried Wilhelm Leibniz during the Leibniz–Newton calculus controversy and was an early proponent of Leibniz ...
used a system with a point on a line, called the ''pole'' and ''polar axis'' respectively. Coordinates were specified by the distance from the pole and the angle from the ''polar axis''. Bernoulli's work extended to finding the
radius of curvature In differential geometry, the radius of curvature, , is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius ...
of curves expressed in these coordinates. The actual term ''polar coordinates'' has been attributed to Gregorio Fontana and was used by 18th-century Italian writers. The term appeared in English in
George Peacock George Peacock FRS (9 April 1791 – 8 November 1858) was an English mathematician and Anglican cleric. He founded what has been called the British algebra of logic. Early life Peacock was born on 9 April 1791 at Thornton Hall, Denton, nea ...
's 1816 translation of Lacroix's ''Differential and Integral Calculus''.
Alexis Clairaut Alexis Claude Clairaut (; ; 13 May 1713 – 17 May 1765) was a French mathematician, astronomer, and geophysicist. He was a prominent Newtonian whose work helped to establish the validity of the principles and results that Isaac Newton, Sir Isaa ...
was the first to think of polar coordinates in three dimensions, and
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
was the first to actually develop them.


Conventions

The radial coordinate is often denoted by ''r'' or ''ρ'', and the angular coordinate by ''φ'', ''θ'', or ''t''. The angular coordinate is specified as ''φ'' by
ISO The International Organization for Standardization (ISO ; ; ) is an independent, non-governmental, international standard development organization composed of representatives from the national standards organizations of member countries. Me ...
standard 31-11, now 80000-2:2019. However, in mathematical literature the angle is often denoted by θ instead. Angles in polar notation are generally expressed in either degrees or
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
s (2 rad being equal to 360°). Degrees are traditionally used in
navigation Navigation is a field of study that focuses on the process of monitoring and controlling the motion, movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navig ...
,
surveying Surveying or land surveying is the technique, profession, art, and science of determining the land, terrestrial Plane (mathematics), two-dimensional or Three-dimensional space#In Euclidean geometry, three-dimensional positions of Point (geom ...
, and many applied disciplines, while radians are more common in mathematics and mathematical
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
. The angle ''φ'' is defined to start at 0° from a ''reference direction'', and to increase for rotations in either clockwise (cw) or counterclockwise (ccw) orientation. For example, in mathematics, the reference direction is usually drawn as a ray from the pole horizontally to the right, and the polar angle increases to positive angles for ccw rotations, whereas in navigation ( bearing, heading) the 0°-heading is drawn vertically upwards and the angle increases for cw rotations. The polar angles decrease towards negative values for rotations in the respectively opposite orientations.


Uniqueness of polar coordinates

Adding any number of full turns (360°) to the angular coordinate does not change the corresponding direction. Similarly, any polar coordinate is identical to the coordinate with the negative radial component and the opposite direction (adding 180° to the polar angle). Therefore, the same point (''r'', ''φ'') can be expressed with an infinite number of different polar coordinates and , where ''n'' is an arbitrary
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
. Moreover, the pole itself can be expressed as (0, ''φ'') for any angle ''φ''. Where a unique representation is needed for any point besides the pole, it is usual to limit ''r'' to positive numbers () and ''φ'' to either the interval or the interval , which in radians are or . Another convention, in reference to the usual
codomain In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
of the arctan function, is to allow for arbitrary nonzero real values of the radial component and restrict the polar angle to . In all cases a unique azimuth for the pole (''r'' = 0) must be chosen, e.g., ''φ'' = 0.


Converting between polar and Cartesian coordinates

The polar coordinates ''r'' and ''φ'' can be converted to the Cartesian coordinates ''x'' and ''y'' by using the
trigonometric function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
s sine and cosine: \begin x &= r \cos \varphi, \\ y &= r \sin \varphi. \end The Cartesian coordinates ''x'' and ''y'' can be converted to polar coordinates ''r'' and ''φ'' with ''r'' ≥ 0 and ''φ'' in the interval (−, ] by: \begin r &= \sqrt = \operatorname(x,y)\\ \varphi &= \operatorname(y, x), \end where hypot is the Pythagorean addition, Pythagorean sum and
atan2 In computing and mathematics, the function (mathematics), function atan2 is the 2-Argument of a function, argument arctangent. By definition, \theta = \operatorname(y, x) is the angle measure (in radians, with -\pi 0, \\ mu \arctan\left(\fr ...
is a common variation on the
arctangent In mathematics, the inverse trigonometric functions (occasionally also called ''antitrigonometric'', ''cyclometric'', or ''arcus'' functions) are the inverse functions of the trigonometric functions, under suitably restricted domains. Specific ...
function defined as \operatorname(y, x) = \begin \arctan\left(\frac\right) & \mbox x > 0\\ \arctan\left(\frac\right) + \pi & \mbox x < 0 \mbox y \ge 0\\ \arctan\left(\frac\right) - \pi & \mbox x < 0 \mbox y < 0\\ \frac & \mbox x = 0 \mbox y > 0\\ -\frac & \mbox x = 0 \mbox y < 0\\ \text & \mbox x = 0 \mbox y = 0. \end If ''r'' is calculated first as above, then this formula for ''φ'' may be stated more simply using the
arccosine In mathematics, the inverse trigonometric functions (occasionally also called ''antitrigonometric'', ''cyclometric'', or ''arcus'' functions) are the inverse functions of the trigonometric functions, under suitably restricted domains. Specific ...
function: \varphi = \begin \arccos\left(\frac\right) & \mbox y \ge 0 \mbox r \neq 0 \\ -\arccos\left(\frac\right) & \mbox y < 0 \\ \text & \mbox r = 0. \end


Complex numbers

Every
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
can be represented as a point in the
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
, and can therefore be expressed by specifying either the point's Cartesian coordinates (called rectangular or Cartesian form) or the point's polar coordinates (called polar form). In polar form, the distance and angle coordinates are often referred to as the number's magnitude and argument respectively. Two complex numbers can be multiplied by adding their arguments and multiplying their magnitudes. The complex number ''z'' can be represented in rectangular form as z = x + iy where ''i'' is the
imaginary unit The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
, or can alternatively be written in polar form as z = r(\cos\varphi + i\sin\varphi) and from there, by
Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for ...
, as z = re^ = r \exp i \varphi. where ''e'' is
Euler's number The number is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function. It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can ...
, and ''φ'', expressed in radians, is the
principal value In mathematics, specifically complex analysis, the principal values of a multivalued function are the values along one chosen branch (mathematical analysis), branch of that Function (mathematics), function, so that it is Single-valued function, ...
of the complex number function arg applied to ''x'' + ''iy''. To convert between the rectangular and polar forms of a complex number, the conversion formulae given above can be used. Equivalent are the and
angle notation In physics and engineering, a phasor (a portmanteau of phase vector) is a complex number representing a sinusoidal function whose amplitude and initial phase are time-invariant and whose angular frequency is fixed. It is related to a mor ...
s: z = r \operatorname\mathrm \varphi = r \angle \varphi . For the operations of
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, division,
exponentiation In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication ...
, and root extraction of complex numbers, it is generally much simpler to work with complex numbers expressed in polar form rather than rectangular form. From the laws of exponentiation: ; Multiplication: r_0 e^\, r_1 e^ = r_0 r_1 e^ ; Division: \frac = \frace^ ; Exponentiation ( De Moivre's formula): \left(re^\right)^n = r^n e^ ; Root Extraction (Principal root): \sqrt = \sqrt e^


Polar equation of a curve

The equation defining a
plane curve In mathematics, a plane curve is a curve in a plane that may be a Euclidean plane, an affine plane or a projective plane. The most frequently studied cases are smooth plane curves (including piecewise smooth plane curves), and algebraic plane c ...
expressed in polar coordinates is known as a ''polar equation''. In many cases, such an equation can simply be specified by defining ''r'' as a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
of ''φ''. The resulting curve then consists of points of the form (''r''(''φ''), ''φ'') and can be regarded as the
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discret ...
of the polar function ''r''. Note that, in contrast to Cartesian coordinates, the independent variable ''φ'' is the ''second'' entry in the ordered pair. Different forms of
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
can be deduced from the equation of a polar function ''r'': * If the curve will be symmetrical about the horizontal (0°/180°) ray; * If it will be symmetric about the vertical (90°/270°) ray: * If it will be rotationally symmetric by α clockwise and counterclockwise about the pole. Because of the circular nature of the polar coordinate system, many curves can be described by a rather simple polar equation, whereas their Cartesian form is much more intricate. Among the best known of these curves are the polar rose,
Archimedean spiral The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Ancient Greece, Greek mathematician Archimedes. The term ''Archimedean spiral'' is sometimes used to refer to the more gene ...
,
lemniscate In algebraic geometry, a lemniscate ( or ) is any of several figure-eight or -shaped curves. The word comes from the Latin , meaning "decorated with ribbons", from the Greek (), meaning "ribbon",. or which alternatively may refer to the wool fr ...
,
limaçon In geometry, a limaçon or limacon , also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius. I ...
, and
cardioid In geometry, a cardioid () is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal ...
. For the circle, line, and polar rose below, it is understood that there are no restrictions on the domain and range of the curve.


Circle

The general equation for a circle with a center at (r_0, \gamma) and radius ''a'' is r^2 - 2 r r_0 \cos(\varphi - \gamma) + r_0^2 = a^2. This can be simplified in various ways, to conform to more specific cases, such as the equation r(\varphi)=a for a circle with a center at the pole and radius ''a''. When or the origin lies on the circle, the equation becomes r = 2 a\cos(\varphi - \gamma). In the general case, the equation can be solved for , giving r = r_0 \cos(\varphi - \gamma) + \sqrt The solution with a minus sign in front of the square root gives the same curve.


Line

''Radial'' lines (those running through the pole) are represented by the equation \varphi = \gamma, where \gamma is the angle of elevation of the line; that is, \varphi = \arctan m, where m is the
slope In mathematics, the slope or gradient of a Line (mathematics), line is a number that describes the direction (geometry), direction of the line on a plane (geometry), plane. Often denoted by the letter ''m'', slope is calculated as the ratio of t ...
of the line in the Cartesian coordinate system. The non-radial line that crosses the radial line \varphi = \gamma
perpendicular In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
ly at the point (r_0, \gamma) has the equation r(\varphi) = r_0 \sec(\varphi - \gamma). Otherwise stated (r_0, \gamma) is the point in which the tangent intersects the imaginary circle of radius r_0


Polar rose

A polar rose is a mathematical curve that looks like a petaled flower, and that can be expressed as a simple polar equation, r(\varphi) = a\cos\left(k\varphi + \gamma_0\right) for any constant γ0 (including 0). If ''k'' is an integer, these equations will produce a ''k''-petaled rose if ''k'' is odd, or a 2''k''-petaled rose if ''k'' is even. If ''k'' is rational, but not an integer, a rose-like shape may form but with overlapping petals. Note that these equations never define a rose with 2, 6, 10, 14, etc. petals. The variable ''a'' directly represents the length or amplitude of the petals of the rose, while ''k'' relates to their spatial frequency. The constant γ0 can be regarded as a phase angle.


Archimedean spiral

The
Archimedean spiral The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Ancient Greece, Greek mathematician Archimedes. The term ''Archimedean spiral'' is sometimes used to refer to the more gene ...
is a spiral discovered by
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
which can also be expressed as a simple polar equation. It is represented by the equation r(\varphi) = a + b\varphi. Changing the parameter ''a'' will turn the spiral, while ''b'' controls the distance between the arms, which for a given spiral is always constant. The Archimedean spiral has two arms, one for and one for . The two arms are smoothly connected at the pole. If , taking the mirror image of one arm across the 90°/270° line will yield the other arm. This curve is notable as one of the first curves, after the
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
s, to be described in a mathematical treatise, and as a prime example of a curve best defined by a polar equation.


Conic sections

A
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
with one focus on the pole and the other somewhere on the 0° ray (so that the conic's
major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longe ...
lies along the polar axis) is given by: r = where ''e'' is the
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
and \ell is the semi-latus rectum (the perpendicular distance at a focus from the major axis to the curve). If , this equation defines a
hyperbola In mathematics, a hyperbola is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected component ( ...
; if , it defines a
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exactl ...
; and if , it defines an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
. The special case of the latter results in a circle of the radius \ell.


Quadratrix

A quadratrix in the first quadrant (''x, y'') is a curve with ''y'' = ρ sin θ equal to the fraction of the quarter circle with radius ''r'' determined by the radius through the curve point. Since this fraction is \frac, the curve is given by \rho (\theta) = \frac.


Intersection of two polar curves

The graphs of two polar functions r = f(\theta) and r = g(\theta) have possible intersections of three types: # In the origin, if the equations f(\theta) = 0 and g(\theta) = 0 have at least one solution each. # All the points (\theta_i),\theta_i/math> where \theta_i are solutions to the equation f(\theta+2k\pi)=g(\theta) where k is an integer. # All the points (\theta_i),\theta_i/math> where \theta_i are solutions to the equation f(\theta+(2k+1)\pi)=-g(\theta) where k is an integer.


Calculus

Calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
can be applied to equations expressed in polar coordinates. The angular coordinate ''φ'' is expressed in radians throughout this section, which is the conventional choice when doing calculus.


Differential calculus

Using and , one can derive a relationship between derivatives in Cartesian and polar coordinates. For a given function, ''u''(''x'',''y''), it follows that (by computing its
total derivative In mathematics, the total derivative of a function at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with res ...
s) or \begin r \frac &= r \frac \cos\varphi + r \frac \sin\varphi = x \frac + y \frac, \\ pt \frac &= - \frac r \sin\varphi + \frac r \cos\varphi = -y \frac + x \frac. \end Hence, we have the following formula: \begin r \frac &= x \frac + y \frac \\ pt \frac &= -y \frac + x \frac. \end Using the inverse coordinates transformation, an analogous reciprocal relationship can be derived between the derivatives. Given a function ''u''(''r'',''φ''), it follows that \begin \frac &= \frac\frac + \frac\frac, \\ pt \frac &= \frac\frac + \frac\frac, \end or \begin \frac &= \frac\frac - \frac\frac \\ pt &= \cos \varphi \frac - \frac \sin\varphi \frac, \\ pt \frac &= \frac\frac + \frac\frac \\ pt &= \sin\varphi \frac + \frac \cos\varphi \frac. \end Hence, we have the following formulae: \begin \frac &= \cos \varphi \frac - \frac \sin\varphi \frac \\ pt \frac &= \sin \varphi \frac + \frac \cos\varphi \frac. \end To find the Cartesian slope of the tangent line to a polar curve ''r''(''φ'') at any given point, the curve is first expressed as a system of
parametric equations In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, as functions of one or several variables called parameters. In the case of a single parameter, parametric equations are commonly used to ...
. \begin x &= r(\varphi)\cos\varphi \\ y &= r(\varphi)\sin\varphi \end Differentiating both equations with respect to ''φ'' yields \begin \frac &= r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi \\ pt \frac &= r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi. \end Dividing the second equation by the first yields the Cartesian slope of the tangent line to the curve at the point : \frac = \frac. For other useful formulas including divergence, gradient, and Laplacian in polar coordinates, see
curvilinear coordinates In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is invertible, l ...
.


Integral calculus (arc length)

The arc length (length of a line segment) defined by a polar function is found by the integration over the curve ''r''(''φ''). Let ''L'' denote this length along the curve starting from points ''A'' through to point ''B'', where these points correspond to ''φ'' = ''a'' and ''φ'' = ''b'' such that . The length of ''L'' is given by the following integral L = \int_a^b \sqrt d\varphi


Integral calculus (area)

Let ''R'' denote the region enclosed by a curve ''r''(''φ'') and the rays ''φ'' = ''a'' and ''φ'' = ''b'', where . Then, the area of ''R'' is \frac12\int_a^b \left (\varphi)\right2\, d\varphi. This result can be found as follows. First, the interval is divided into ''n'' subintervals, where ''n'' is some positive integer. Thus Δ''φ'', the angle measure of each subinterval, is equal to (the total angle measure of the interval), divided by ''n'', the number of subintervals. For each subinterval ''i'' = 1, 2, ..., ''n'', let ''φ''''i'' be the midpoint of the subinterval, and construct a
sector Sector may refer to: Places * Sector, West Virginia, U.S. Geometry * Circular sector, the portion of a disc enclosed by two radii and a circular arc * Hyperbolic sector, a region enclosed by two radii and a hyperbolic arc * Spherical sector, a po ...
with the center at the pole, radius ''r''(''φ''''i''), central angle Δ''φ'' and arc length ''r''(''φ''''i'')Δ''φ''. The area of each constructed sector is therefore equal to \left (\varphi_i)\right2 \pi \cdot \frac = \frac\left (\varphi_i)\right2 \Delta \varphi. Hence, the total area of all of the sectors is \sum_^n \tfrac12r(\varphi_i)^2\,\Delta\varphi. As the number of subintervals ''n'' is increased, the approximation of the area improves. Taking , the sum becomes the
Riemann sum In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is in numerical integration, i.e., approxima ...
for the above integral. A mechanical device that computes area integrals is the
planimeter A planimeter, also known as a platometer, is a measuring instrument used to determine the area of an arbitrary two-dimensional shape. Construction There are several kinds of planimeters, but all operate in a similar way. The precise way in whic ...
, which measures the area of plane figures by tracing them out: this replicates integration in polar coordinates by adding a joint so that the 2-element linkage effects
Green's theorem In vector calculus, Green's theorem relates a line integral around a simple closed curve to a double integral over the plane region (surface in \R^2) bounded by . It is the two-dimensional special case of Stokes' theorem (surface in \R^3) ...
, converting the quadratic polar integral to a linear integral.


Generalization

Using
Cartesian coordinates In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
, an infinitesimal area element can be calculated as ''dA'' = ''dx'' ''dy''. The substitution rule for multiple integrals states that, when using other coordinates, the Jacobian determinant of the coordinate conversion formula has to be considered: J = \det \frac = \begin \frac & \frac \\ pt \frac & \frac \end = \begin \cos\varphi & -r\sin\varphi \\ \sin\varphi & r\cos\varphi \end = r\cos^2\varphi + r\sin^2\varphi = r. Hence, an area element in polar coordinates can be written as dA = dx\,dy\ = J\,dr\,d\varphi = r\,dr\,d\varphi. Now, a function, that is given in polar coordinates, can be integrated as follows: \iint_R f(x, y)\, dA = \int_a^b \int_0^ f(r, \varphi)\,r\,dr\,d\varphi. Here, ''R'' is the same region as above, namely, the region enclosed by a curve ''r''(''φ'') and the rays ''φ'' = ''a'' and ''φ'' = ''b''. The formula for the area of ''R'' is retrieved by taking ''f'' identically equal to 1. A more surprising application of this result yields the
Gaussian integral The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function f(x) = e^ over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is \int_^\infty e^\,dx = \s ...
: \int_^\infty e^ \, dx = \sqrt\pi.


Vector calculus

Vector calculus Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
can also be applied to polar coordinates. For a planar motion, let \mathbf be the position vector , with ''r'' and depending on time ''t''. We define an
orthonormal basis In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite Dimension (linear algebra), dimension is a Basis (linear algebra), basis for V whose vectors are orthonormal, that is, they are all unit vec ...
with three unit vectors: ''radial, transverse, and normal directions''. The ''radial direction'' is defined by normalizing \mathbf: \hat = (\cos(\varphi), \sin(\varphi)) Radial and velocity directions span the ''plane of the motion'', whose normal direction is denoted \hat: \hat = \hat \times \hat. The ''transverse direction'' is perpendicular to both radial and normal directions: \hat \boldsymbol \varphi = (-\sin(\varphi), \cos(\varphi)) = \hat \times \hat \ , Then \begin \mathbf &= (x,\ y) = r(\cos\varphi,\ \sin\varphi) = r \hat\ , \\ .5ex \dot &= \left(\dot,\ \dot\right) = \dot(\cos\varphi,\ \sin\varphi) + r\dot(-\sin\varphi,\ \cos\varphi) = \dot\hat + r\dot\hat\ ,\\ .5ex \ddot &= \left(\ddot,\ \ddot\right) \\ ex &= \ddot(\cos\varphi,\ \sin\varphi) + 2\dot\dot(-\sin\varphi,\ \cos\varphi) + r\ddot(-\sin\varphi,\ \cos\varphi) - r\dot^2(\cos\varphi,\ \sin\varphi) \\ ex &= \left(\ddot - r\dot^2\right) \hat + \left(r\ddot + 2\dot\dot\right) \hat \\ ex &= \left(\ddot - r\dot^2\right) \hat + \frac\; \frac \left(r^2\dot\right) \hat. \end This equation can be obtain by taking derivative of the function and derivatives of the unit basis vectors. For a curve in 2D where the parameter is \theta the previous equations simplify to: \begin \mathbf &= r(\theta) \hat \mathbf_r \\ ex\frac &= \frac \hat \mathbf_r + r \hat \mathbf_\theta\\ ex\frac &= \left(\frac -r\right) \hat \mathbf_r + \frac \hat \mathbf_\theta \end


Centrifugal and Coriolis terms

The term r\dot\varphi^2 is sometimes referred to as the ''centripetal acceleration'', and the term 2\dot r \dot\varphi as the ''Coriolis acceleration''. For example, see Shankar. Note: these terms, that appear when acceleration is expressed in polar coordinates, are a mathematical consequence of differentiation; they appear whenever polar coordinates are used. In planar particle dynamics these accelerations appear when setting up Newton's second law of motion in a rotating frame of reference. Here these extra terms are often called
fictitious force A fictitious force, also known as an inertial force or pseudo-force, is a force that appears to act on an object when its motion is described or experienced from a non-inertial reference frame, non-inertial frame of reference. Unlike real forc ...
s; fictitious because they are simply a result of a change in coordinate frame. That does not mean they do not exist, rather they exist only in the rotating frame.


=Co-rotating frame

= For a particle in planar motion, one approach to attaching physical significance to these terms is based on the concept of an instantaneous ''co-rotating frame of reference''.For the following discussion, see To define a co-rotating frame, first an origin is selected from which the distance ''r''(''t'') to the particle is defined. An axis of rotation is set up that is perpendicular to the plane of motion of the particle, and passing through this origin. Then, at the selected moment ''t'', the rate of rotation of the co-rotating frame Ω is made to match the rate of rotation of the particle about this axis, ''dφ''/''dt''. Next, the terms in the acceleration in the inertial frame are related to those in the co-rotating frame. Let the location of the particle in the inertial frame be (''r''(''t''), ''φ''(''t'')), and in the co-rotating frame be (''r''′(t), ''φ''′(t)). Because the co-rotating frame rotates at the same rate as the particle, ''dφ''′/''dt'' = 0. The fictitious centrifugal force in the co-rotating frame is ''mr''Ω2, radially outward. The velocity of the particle in the co-rotating frame also is radially outward, because ''dφ''′/''dt'' = 0. The ''fictitious Coriolis force'' therefore has a value −2''m''(''dr''/''dt'')Ω, pointed in the direction of increasing ''φ'' only. Thus, using these forces in Newton's second law we find: \mathbf + \mathbf_\text + \mathbf_\text = m\ddot \, , where over dots represent derivatives with respect to time, and F is the net real force (as opposed to the fictitious forces). In terms of components, this vector equation becomes: \begin F_r + mr\Omega^2 &= m\ddot \\ F_\varphi - 2m\dot\Omega &= mr\ddot \ , \end which can be compared to the equations for the inertial frame: \begin F_r &= m\ddot - mr\dot^2 \\ F_\varphi &= mr\ddot + 2m\dot\dot \ . \end This comparison, plus the recognition that by the definition of the co-rotating frame at time ''t'' it has a rate of rotation Ω = ''dφ''/''dt'', shows that we can interpret the terms in the acceleration (multiplied by the mass of the particle) as found in the inertial frame as the negative of the centrifugal and Coriolis forces that would be seen in the instantaneous, non-inertial co-rotating frame. For general motion of a particle (as opposed to simple circular motion), the centrifugal and Coriolis forces in a particle's frame of reference commonly are referred to the instantaneous
osculating circle An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to unders ...
of its motion, not to a fixed center of polar coordinates. For more detail, see
centripetal force Centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is the force that makes a body follow a curved trajectory, path. The direction of the centripetal force is always orthogonality, orthogonal to the motion of the bod ...
.


Differential geometry

In the modern terminology of
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, polar coordinates provide
coordinate charts In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies th ...
for the
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
, the plane minus the origin. In these coordinates, the Euclidean
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
is given byds^2 = dr^2 + r^2 d\theta^2.This can be seen via the change of variables formula for the metric tensor, or by computing the
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications ...
s ''dx'', ''dy'' via the
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The re ...
of the 0-forms , and substituting them in the Euclidean metric tensor . Let p_1=(x_1,y_1)=(r_1,\theta_1), and p_2=(x_2,y_2)=(r_2,\theta_2) be two points in the plane given by their cartesian and polar coordinates. Then :ds^2=dx^2+dy^2=(x_2-x_1)^2+(y_2-y_1)^2. Since dx^2=(r_2\cos\theta_2-r_1\cos\theta_1)^2, and dy^2=(r_2\sin\theta_2-r_1\sin\theta_1)^2, we get that :ds^2=r_2^2\cos^2\theta_2-2r_1r_2\cos\theta_1\cos\theta_2+r_1^2\cos^2\theta_1+r_2^2\sin^2\theta_2-2r_1r_2\sin\theta_1\sin\theta_2+r_1^2\sin^2\theta_1= :r_2^2(\cos^2\theta_2+\sin^2\theta_2)+r_1^2(\cos^2\theta_1+\sin^2\theta_1)-2r_1r_2(\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)= :r_1^2+r_2^2-2r_1r_2(1-1+\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)= :(r_2-r_1)^2+2r_1r_2(1-\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2). Now we use the trigonometric identity \cos(\theta_2-\theta_1)=\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2 to proceed: :ds^2=dr^2+2r_1r_2(1-\cos d\theta). If the radial and angular quantities are near to each other, and therefore near to a common quantity r and \theta, we have that r_1r_2\approx r^2. Moreover, the cosine of d\theta can be approximated with the Taylor series of the cosine up to linear terms: :\cos d\theta\approx1-\frac, so that 1-\cos d\theta\approx\frac, and 2r_1r_2(1-\cos d\theta)\approx2r^2\frac=r^2d\theta^2. Therefore, around an infinitesimally small domain of any point, :ds^2=dr^2+r^2d\theta^2, as stated. An
orthonormal In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal unit vectors. A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpe ...
frame A frame is often a structural system that supports other components of a physical construction and/or steel frame that limits the construction's extent. Frame and FRAME may also refer to: Physical objects In building construction *Framing (con ...
with respect to this metric is given bye_r = \frac, \quad e_\theta = \frac1r \frac,with dual coframee^r = dr, \quad e^\theta = r d\theta.The
connection form In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Carta ...
relative to this frame and the
Levi-Civita connection In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the ( pseudo-) Riemannian ...
is given by the skew-symmetric matrix of 1-forms_j = \begin 0 & -d\theta \\ d\theta & 0\endand hence the
curvature form In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case. Definition Let ''G'' be a Lie group with Lie algebra ...
vanishes. Therefore, as expected, the punctured plane is a flat manifold.


Extensions in 3D

The polar coordinate system is extended into three dimensions with two different coordinate systems, the
cylindrical A cylinder () has traditionally been a Solid geometry, three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a Prism (geometry), prism with a circle as its base. A cylinder may ...
and
spherical coordinate system In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are * the radial distance along the line connecting the point to a fixed point ...
.


Applications

Polar coordinates are two-dimensional and thus they can be used only where point positions lie on a single two-dimensional plane. They are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point. For instance, the examples above show how elementary polar equations suffice to define curves—such as the Archimedean spiral—whose equation in the Cartesian coordinate system would be much more intricate. Moreover, many physical systems—such as those concerned with bodies moving around a central point or with phenomena originating from a central point—are simpler and more intuitive to model using polar coordinates. The initial motivation for the introduction of the polar system was the study of
circular Circular may refer to: * The shape of a circle * ''Circular'' (album), a 2006 album by Spanish singer Vega * Circular letter (disambiguation), a document addressed to many destinations ** Government circular, a written statement of government pol ...
and
orbital motion In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an obj ...
.


Position and navigation

Polar coordinates are used often in
navigation Navigation is a field of study that focuses on the process of monitoring and controlling the motion, movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navig ...
as the destination or direction of travel can be given as an angle and distance from the object being considered. For instance,
aircraft An aircraft ( aircraft) is a vehicle that is able to flight, fly by gaining support from the Atmosphere of Earth, air. It counters the force of gravity by using either Buoyancy, static lift or the Lift (force), dynamic lift of an airfoil, or, i ...
use a slightly modified version of the polar coordinates for navigation. In this system, the one generally used for any sort of navigation, the 0° ray is generally called heading 360, and the angles continue in a clockwise direction, rather than counterclockwise, as in the mathematical system. Heading 360 corresponds to
magnetic north The north magnetic pole, also known as the magnetic north pole, is a point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downward (in other words, if a magnetic compass needle is allowed t ...
, while headings 90, 180, and 270 correspond to magnetic east, south, and west, respectively. Thus, an aircraft traveling 5 nautical miles due east will be traveling 5 units at heading 90 (read zero-niner-zero by
air traffic control Air traffic control (ATC) is a service provided by ground-based air traffic controllers who direct aircraft on the ground and through a given section of controlled airspace, and can provide advisory services to aircraft in non-controlled air ...
).


Modeling

Systems displaying
radial symmetry Symmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symme ...
provide natural settings for the polar coordinate system, with the central point acting as the pole. A prime example of this usage is the
groundwater flow equation Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar ...
when applied to radially symmetric wells. Systems with a radial force are also good candidates for the use of the polar coordinate system. These systems include
gravitational fields In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as t ...
, which obey the
inverse-square law In science, an inverse-square law is any scientific law stating that the observed "intensity" of a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental ca ...
, as well as systems with
point source A point source is a single identifiable ''localized'' source of something. A point source has a negligible extent, distinguishing it from other source geometries. Sources are called point sources because, in mathematical modeling, these sources ...
s, such as radio antennas. Radially asymmetric systems may also be modeled with polar coordinates. For example, a
microphone A microphone, colloquially called a mic (), or mike, is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and publi ...
's pickup pattern illustrates its proportional response to an incoming sound from a given direction, and these patterns can be represented as polar curves. The curve for a standard cardioid microphone, the most common unidirectional microphone, can be represented as at its target design frequency. The pattern shifts toward omnidirectionality at lower frequencies.


See also

*
Curvilinear coordinates In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is invertible, l ...
* List of common coordinate transformations *
Log-polar coordinates In mathematics, log-polar coordinates (or logarithmic polar coordinates) is a coordinate system in two dimensions, where a point is identified by two numbers, one for the logarithm of the distance to a certain point, and one for an angle. Log-polar ...
*
Polar decomposition In mathematics, the polar decomposition of a square real or complex matrix A is a factorization of the form A = U P, where U is a unitary matrix, and P is a positive semi-definite Hermitian matrix (U is an orthogonal matrix, and P is a posit ...
*
Unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...


References


General references

* * *


External links

*
Coordinate Converter — converts between polar, Cartesian and spherical coordinatesPolar Coordinate System Dynamic Demo
{{DEFAULTSORT:Polar Coordinate System Two-dimensional coordinate systems Orthogonal coordinate systems