Torsion Element
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
. The torsion submodule of a module is the
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since t ...
formed by the torsion elements (in cases when this is indeed a submodule, such as when the ring is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
). A torsion module is a module consisting entirely of torsion elements. A module is torsion-free if its only torsion element is the zero element. This terminology is more commonly used for modules over a domain, that is, when the regular elements of the ring are all its nonzero elements. This terminology applies to
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s (with "module" and "submodule" replaced by "
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
" and "
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
"). This is just a special case of the more general situation, because abelian groups are modules over the ring of
integers An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
. (In fact, this is the origin of the terminology, which was introduced for abelian groups before being generalized to modules.) In the case of groups that are noncommutative, a ''torsion element'' is an element of finite
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
. Contrary to the
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
case, the torsion elements do not form a subgroup, in general.


Definition

An element ''m'' of a module ''M'' over a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
''R'' is called a ''torsion element'' of the module if there exists a regular element ''r'' of the ring (an element that is neither a left nor a right
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
) that annihilates ''m'', i.e., In an
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
(a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
without zero divisors), every non-zero element is regular, so a torsion element of a module over an integral domain is one annihilated by a non-zero element of the integral domain. Some authors use this as the definition of a torsion element, but this definition does not work well over more general rings. A module ''M'' over a ring ''R'' is called a ''torsion module'' if all its elements are torsion elements, and '' torsion-free'' if zero is the only torsion element. If the ring ''R'' is commutative then the set of all torsion elements forms a submodule of ''M'', called the ''torsion submodule'' of ''M'', sometimes denoted T(''M''). If ''R'' is not commutative, T(''M'') may or may not be a submodule. It is shown in that ''R'' is a right Ore ring if and only if T(''M'') is a submodule of ''M'' for all right ''R''-modules. Since right Noetherian domains are Ore, this covers the case when ''R'' is a right
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ...
domain (which might not be commutative). More generally, let ''M'' be a module over a ring ''R'' and ''S'' be a multiplicatively closed subset of ''R''. An element ''m'' of ''M'' is called an ''S''-torsion element if there exists an element ''s'' in ''S'' such that ''s'' annihilates ''m'', i.e., In particular, one can take for ''S'' the set of regular elements of the ring ''R'' and recover the definition above. An element ''g'' of a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
''G'' is called a ''torsion element'' of the group if it has finite order, i.e., if there is a positive integer ''m'' such that ''g''''m'' = ''e'', where ''e'' denotes the
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
of the group, and ''g''''m'' denotes the product of ''m'' copies of ''g''. A group is called a '' torsion (or periodic) group'' if all its elements are torsion elements, and a if its only torsion element is the identity element. Any
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
may be viewed as a module over the ring Z of integers, and in this case the two notions of torsion coincide.


Examples

# Let ''M'' be a
free module In mathematics, a free module is a module that has a ''basis'', that is, a generating set that is linearly independent. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commu ...
over any ring ''R''. Then it follows immediately from the definitions that ''M'' is torsion-free (if the ring ''R'' is not a domain then torsion is considered with respect to the set ''S'' of non-zero-divisors of ''R''). In particular, any
free abelian group In mathematics, a free abelian group is an abelian group with a Free module, basis. Being an abelian group means that it is a Set (mathematics), set with an addition operation (mathematics), operation that is associative, commutative, and inverti ...
is torsion-free and any
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over a field ''K'' is torsion-free when viewed as a module over ''K''. # By contrast with example 1, any
finite group In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
(abelian or not) is periodic and finitely generated.
Burnside's problem The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. It was posed by William Burnside in 1902, making it one of the oldest questions in group theory, and was inf ...
, conversely, asks whether a finitely generated periodic group must be finite. The answer is "no" in general, even if the period is fixed. # The torsion elements of the
multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
of a field are its
roots of unity In mathematics, a root of unity is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group char ...
. # In the
modular group In mathematics, the modular group is the projective special linear group \operatorname(2,\mathbb Z) of 2\times 2 matrices with integer coefficients and determinant 1, such that the matrices A and -A are identified. The modular group acts on ...
, Γ obtained from the group SL(2, Z) of 2×2 integer
matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
with unit
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
by factoring out its center, any nontrivial torsion element either has order two and is conjugate to the element ''S'' or has order three and is conjugate to the element ''ST''. In this case, torsion elements do not form a subgroup, for example, ''S''·''ST'' = ''T'', which has infinite order. # The abelian group Q/Z, consisting of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s modulo 1, is periodic, i.e. every element has finite order. Analogously, the module K(''t'')/K 't''over the ring ''R'' = K 't''of
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s in one variable is pure torsion. Both these examples can be generalized as follows: if ''R'' is an integral domain and ''Q'' is its
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
, then ''Q''/''R'' is a torsion ''R''-module. # The
torsion subgroup In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group ...
of (R/Z, +) is (Q/Z, +) while the groups (R, +) and (Z, +) are torsion-free. The quotient of a
torsion-free abelian group In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only elem ...
by a subgroup is torsion-free exactly when the subgroup is a pure subgroup. # Consider a
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
''L'' acting on a
finite-dimensional In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to d ...
vector space ''V'' over the field ''K''. If we view ''V'' as an ''K'' 'L''module in the natural way, then (as a result of many things, either simply by finite-dimensionality or as a consequence of the Cayley–Hamilton theorem), ''V'' is a torsion ''K'' 'L''module.


Case of a principal ideal domain

Suppose that ''R'' is a (commutative)
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some author ...
and ''M'' is a finitely generated ''R''-module. Then the
structure theorem for finitely generated modules over a principal ideal domain In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finite ...
gives a detailed description of the module ''M'' up to
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
. In particular, it claims that : M \simeq F\oplus \mathrm T(M), where ''F'' is a free ''R''-module of finite
rank A rank is a position in a hierarchy. It can be formally recognized—for example, cardinal, chief executive officer, general, professor—or unofficial. People Formal ranks * Academic rank * Corporate title * Diplomatic rank * Hierarchy ...
(depending only on ''M'') and T(''M'') is the torsion submodule of ''M''. As a
corollary In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another ...
, any finitely generated torsion-free module over ''R'' is free. This corollary ''does not'' hold for more general commutative domains, even for ''R'' = ''K'' 'x'',''y'' the
ring of polynomials In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often ...
in two variables. For non-finitely generated modules, the above direct decomposition is not true. The torsion subgroup of an abelian group may not be a
direct summand The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
of it.


Torsion and localization

Assume that ''R'' is a commutative domain and ''M'' is an ''R''-module. Let ''Q'' be the
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
of the ring ''R''. Then one can consider the ''Q''-module : M_Q = M \otimes_R Q, obtained from ''M'' by extension of scalars. Since ''Q'' is a field, a module over ''Q'' is a vector space, possibly infinite-dimensional. There is a canonical
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
of abelian groups from ''M'' to ''M''''Q'', and the kernel of this homomorphism is precisely the torsion submodule T(''M''). More generally, if ''S'' is a multiplicatively closed subset of the ring ''R'', then we may consider localization of the ''R''-module ''M'', : M_S = M \otimes_R R_S, which is a module over the localization ''R''''S''. There is a canonical map from ''M'' to ''M''''S'', whose kernel is precisely the ''S''-torsion submodule of ''M''. Thus the torsion submodule of ''M'' can be interpreted as the set of the elements that "vanish in the localization". The same interpretation continues to hold in the non-commutative setting for rings satisfying the Ore condition, or more generally for any right denominator set ''S'' and right ''R''-module ''M''.


Torsion in homological algebra

The concept of torsion plays an important role in
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
. If ''M'' and ''N'' are two modules over a commutative domain ''R'' (for example, two abelian groups, when ''R'' = Z),
Tor functor In mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to const ...
s yield a family of ''R''-modules Tor''i'' (''M'',''N''). The ''S''-torsion of an ''R''-module ''M'' is canonically isomorphic to Tor''R''1(''M'', ''R''''S''/''R'') by the
exact sequence In mathematics, an exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definit ...
of Tor''R''*: The
short exact sequence In mathematics, an exact sequence is a sequence of morphisms between objects (for example, Group (mathematics), groups, Ring (mathematics), rings, Module (mathematics), modules, and, more generally, objects of an abelian category) such that the Im ...
0\to R\to R_S \to R_S/R \to 0 of ''R''-modules yields an exact sequence 0\to\operatorname^R_1(M, R_S/R)\to M\to M_S, and hence \operatorname^R_1(M, R_S/R) is the kernel of the localisation map of ''M''. The symbol denoting the
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
s reflects this relation with the algebraic torsion. This same result holds for non-commutative rings as well as long as the set ''S'' is a right denominator set.


Abelian varieties

The torsion elements of an
abelian variety In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group ...
are ''torsion points'' or, in an older terminology, ''division points''. On
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the ...
s they may be computed in terms of division polynomials.


See also

* Analytic torsion *
Arithmetic dynamics Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the Iterated function, iteration of self-maps of the complex plane or o ...
*
Flat module In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion-free modules. Formally, a module (mathematics), module ''M'' over a ring (mathematics), ring ''R'' is ''flat'' if taking the tensor prod ...
*
Annihilator (ring theory) In mathematics, the annihilator of a subset of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by each element of . Over an integral domain, a module that has a nonzero annihilator ...
*
Localization of a module In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions ...
*
Rank of an abelian group In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group ''A'' is the cardinality of a maximal linearly independent subset. The rank of ''A'' determines the size of the largest free abelian group contained in ''A''. If '' ...
* Ray–Singer torsion *
Torsion-free abelian group In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only elem ...
*
Universal coefficient theorem In algebraic topology, universal coefficient theorems establish relationships between homology groups (or cohomology groups) with different coefficients. For instance, for every topological space , its ''integral homology groups'': :H_i(X,\Z) ...


References


Sources

*Ernst Kunz,
Introduction to Commutative algebra and algebraic geometry
, Birkhauser 1985, *
Irving Kaplansky Irving Kaplansky (March 22, 1917 – June 25, 2006) was a mathematician, college professor, author, and amateur musician.O'Connor, John J.; Robertson, Edmund F., "Irving Kaplansky", MacTutor History of Mathematics archive, University of St And ...
,
Infinite abelian groups
, University of Michigan, 1954. * * *. {{DEFAULTSORT:Torsion (Algebra) Abelian group theory Module theory Homological algebra