Timeline Of Manifolds
   HOME

TheInfoList



OR:

This is a timeline of
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s, one of the major geometric concepts of mathematics. For further background see
history of manifolds and varieties The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves and surfaces as well as ideas from linear algebra and topology. Certain special classes of manifolds also have additional algebraic struct ...
.


Background

Manifolds in contemporary mathematics come in a number of types. These include: *
smooth Smooth may refer to: Mathematics * Smooth function, a function that is infinitely differentiable; used in calculus and topology * Smooth manifold, a differentiable manifold for which all the transition maps are smooth functions * Smooth algebrai ...
manifolds, which are basic in
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
in several variables,
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
and
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
; * piecewise-linear manifolds; *
topological manifold In topology, a topological manifold is a topological space that locally resembles real ''n''- dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds ...
s. There are also related classes, such as homology manifolds and
orbifold In the mathematical disciplines of topology and geometry, an orbifold (for "orbit-manifold") is a generalization of a manifold. Roughly speaking, an orbifold is a topological space that is locally a finite group quotient of a Euclidean space. D ...
s, that resemble manifolds. It took a generation for clarity to emerge, after the initial work of
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
, on the fundamental definitions; and a further generation to discriminate more exactly between the three major classes. Low-dimensional topology (i.e., dimensions 3 and 4, in practice) turned out to be more resistant than the higher dimension, in clearing up Poincaré's legacy. Further developments brought in fresh geometric ideas, concepts from
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, and heavy use of
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
. Participants in the first phase of axiomatization were influenced by
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
: with
Hilbert's axioms Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book ''Grundlagen der Geometrie'' (tr. ''The Foundations of Geometry'') as the foundation for a modern treatment of Euclidean geometry. Other well-known modern ax ...
as exemplary, by
Hilbert's third problem The third of Hilbert's problems, Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedron, polyhedra of equal volume, is it always possible t ...
as solved by Dehn, one of the actors, by
Hilbert's fifteenth problem Hilbert's fifteenth problem is one of the 23 Hilbert problems set out in a list compiled in 1900 by David Hilbert. The problem is to put Schubert's enumerative calculus on a rigorous foundation. Introduction Schubert calculus is the intersectio ...
from the needs of 19th century geometry. The subject matter of manifolds is a strand common to
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
,
differential topology In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
and
geometric topology In mathematics, geometric topology is the study of manifolds and Map (mathematics)#Maps as functions, maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topo ...
.


Timeline to 1900 and Henri Poincaré


1900 to 1920


1920 to the 1945 axioms for homology


1945 to 1960

Terminology: By this period manifolds are generally assumed to be those of Veblen-Whitehead, so locally Euclidean
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
s, but the application of countability axioms was also becoming standard. Veblen-Whitehead did not assume, as Kneser earlier had, that manifolds are
second countable In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
. The term "separable manifold", to distinguish second countable manifolds, survived into the late 1950s.


1961 to 1970


1971–1980


1981–1990


1991–2000


2001–present


See also

* differentiable stack * factorization homology * Kuranishi theory *
Floer homology In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is an invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer intro ...
*
Glossary of algebraic topology This is a glossary of properties and concepts in algebraic topology in mathematics. See also: glossary of topology, list of algebraic topology topics, glossary of category theory, glossary of differential geometry and topology, Timeline of manifo ...
* Timeline of bordism


Notes

{{DEFAULTSORT:Timeline Of Manifolds Manifolds
Manifolds In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...