HOME





Differentiable Stack
A differentiable stack is the analogue in differential geometry of an algebraic stack in algebraic geometry. It can be described either as a stack over differentiable manifolds which admits an atlas, or as a Lie groupoid up to Morita equivalence. Differentiable stacks are particularly useful to handle spaces with singularities (i.e. orbifolds, leaf spaces, quotients), which appear naturally in differential geometry but are not differentiable manifolds. For instance, differentiable stacks have applications in foliation theory, Poisson geometry and twisted K-theory. Definition Definition 1 (via groupoid fibrations) Recall that a category fibred in groupoids (also called a groupoid fibration) consists of a category \mathcal together with a functor \pi: \mathcal \to \mathrm to the category of differentiable manifolds such that # \mathcal is a fibred category, i.e. for any object u of \mathcal and any arrow V \to U of \mathrm there is an arrow v \to u lying over V \to U; # for e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descent (mathematics)
In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification. Descent of vector bundles The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start. Suppose is a topological space covered by open sets . Let be the disjoint union of the , so that there is a natural mapping :p: Y \rightarrow X. We think of as 'above' , with the projection 'down' onto . With this language, ''descent'' implies a vector bundle on (so, a bundle given on each ), and our concern is to 'glue' those bundles , to make a single bundle on . What we mean is that should, when restricted to , give back , up to a bundle isomorphism. The data needed is then this: on each overlap :X_, intersection of and , we'll require mappings :f_: V_i \rightarrow V_j to use to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


0710
71 may refer to: * 71 (number) * one of the years 71 BC, AD 71, 1971, 2071 * ''71'' (film), 2014 British film set in Belfast in 1971 * '' 71: Into the Fire'', 2010 South Korean film * Various highways; see List of highways numbered 71 * The atomic number of lutetium, a lanthanide * The number of the French department Saône-et-Loire * Nickname for the city of Wrocław * 71 Niobe 71 Niobe is a stony Gallia asteroid and relatively slow rotator from the central regions of the asteroid belt, approximately in diameter. It was discovered by the German astronomer Robert Luther on 13 August 1861, and named after Niobe, a char ..., a main-belt asteroid See also

* {{Number disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Although many examples of morphisms are structure-preserving maps, morphisms need not to be maps, but they can be composed in a way that is similar to function composition. Morphisms and objects are constituents of a category. Morphisms, also called ''maps'' or ''arrows'', relate two objects called the ''source'' and the ''target'' of the morphism. There is a partial operation, called ''composition'', on the morphisms of a category that is defined if the target of the first morphism equals the source of the second morphism. The composition of morphisms behaves like function composition ( associativity of composition when it is defined, and existence of an identity morphism for every object). Morphisms and categories recur in much of co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Grothendieck Topology
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as ℓ-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinary t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stack (mathematics)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf (mathematics), sheaf that takes values in category (mathematics), categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphism, isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis. In a more general set-up the restrictions are replaced with Pullback (category theory), pullbacks; fibred category, fibred categories then make a good framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


2 Category
In category theory in mathematics, a 2-category is a category with "morphisms between morphisms", called 2-morphisms. A basic example is the category Cat of all (small) categories, where a 2-morphism is a natural transformation between functors. The concept of a strict 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of bicategory (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1967 by Jean Bénabou. A (2, 1)-category is a 2-category where each 2-morphism is invertible. Definitions A strict 2-category By definition, a strict 2-category ''C'' consists of the data: * a class of 0-''cells'', * for each pairs of 0-cells a, b, a set \operatorname(a, b) called the set of 1-''cells'' from a to b, * for each pairs of 1-cells f, g in the same hom-set, a set \operatorname(f, g) called the set of 2-''cells'' from f to g, * ''ordinary composit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Presheaf (category Theory)
In category theory, a branch of mathematics, a presheaf on a category C is a functor F\colon C^\mathrm\to\mathbf. If C is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space. A morphism of presheaves is defined to be a natural transformation of functors. This makes the collection of all presheaves on C into a category, and is an example of a functor category. It is often written as \widehat = \mathbf^ and it is called the category of presheaves on C. A functor into \widehat is sometimes called a profunctor. A presheaf that is naturally isomorphic to the contravariant hom-functor Hom(–, ''A'') for some object ''A'' of C is called a representable presheaf. Some authors refer to a functor F\colon C^\mathrm\to\mathbf as a \mathbf-valued presheaf. Examples * A simplicial set is a Set-valued presheaf on the simplex category C=\Delta. * A directed multigraph is a presheaf on the catego ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prestack
In algebraic geometry, a prestack ''F'' over a category ''C'' equipped with some Grothendieck topology is a category together with a functor ''p'': ''F'' → ''C'' satisfying a certain lifting condition and such that (when the fibers are groupoids) locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object. Prestacks that appear in nature are typically stacks but some naively constructed prestacks (e.g., groupoid scheme or the prestack of projectivized vector bundles) may not be stacks. Prestacks may be studied on their own or passed to stacks. Since a stack is a prestack, all the results on prestacks are valid for stacks as well. Throughout the article, we work with a fixed base category ''C''; for example, ''C'' can be the category of all schemes over some fixed scheme equipped with some Grothendieck topology. Informal definition Let ''F'' be a category and suppose it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surjective Function
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a function , the codomain is the image of the function's domain . It is not required that be unique; the function may map one or more elements of to the same element of . The term ''surjective'' and the related terms '' injective'' and '' bijective'' were introduced by Nicolas Bourbaki, a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word '' sur'' means ''over'' or ''above'', and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain. Any function induces a surjection by restricting its codomain to the image of its domain. Every surj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]