A tessellation or tiling is the covering of a surface, often a plane, using one or more
geometric shape
A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type.
A plane shape or plane figure is constrained to lie on ...
s, called ''tiles'', with no overlaps and no gaps. In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, tessellation can be generalized to higher dimensions and a variety of geometries.
A periodic tiling has a repeating pattern. Some special kinds include ''
regular tilings
This article lists the regular polytopes and regular polytope compounds in Euclidean geometry, Euclidean, spherical geometry, spherical and hyperbolic geometry, hyperbolic spaces.
The Schläfli symbol describes every regular tessellation of an ' ...
'' with regular polygonal tiles all of the same shape, and '' semiregular tilings'' with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that lacks a repeating pattern is called "non-periodic". An '' aperiodic tiling'' uses a small set of tile shapes that cannot form a repeating pattern. A '' tessellation of space'', also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions.
A real physical tessellation is a tiling made of materials such as cemented ceramic squares or hexagons. Such tilings may be decorative patterns, or may have functions such as providing durable and water-resistant pavement, floor or wall coverings. Historically, tessellations were used in Ancient Rome and in Islamic art such as in the Moroccan architecture and decorative geometric tiling of the
Alhambra
The Alhambra (, ; ar, الْحَمْرَاء, Al-Ḥamrāʾ, , ) is a palace and fortress complex located in Granada, Andalusia, Spain. It is one of the most famous monuments of Islamic architecture and one of the best-preserved palaces of the ...
Tessellations were used by the Sumerians (about 4000 BC) in building wall decorations formed by patterns of clay tiles.
Decorative mosaic tilings made of small squared blocks called tesserae were widely employed in classical antiquity, sometimes displaying geometric patterns.
In 1619
Johannes Kepler
Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
made an early documented study of tessellations. He wrote about regular and semiregular tessellations in his '' Harmonices Mundi''; he was possibly the first to explore and to explain the hexagonal structures of honeycomb and snowflakes.
Some two hundred years later in 1891, the Russian crystallographer
Yevgraf Fyodorov
Evgraf Stepanovich Fedorov (russian: Евгра́ф Степа́нович Фёдоров, – 21 May 1919) was a Russian mathematician, crystallographer and mineralogist.
Fedorov was born in the Russian city of Orenburg. His father was a topo ...
proved that every periodic tiling of the plane features one of seventeen different groups of isometries. Fyodorov's work marked the unofficial beginning of the mathematical study of tessellations. Other prominent contributors include Alexei Vasilievich Shubnikov and Nikolai Belov (1964), and Heinrich Heesch and Otto Kienzle (1963).
Etymology
In Latin, ''tessella'' is a small cubical piece of clay, stone or glass used to make mosaics. The word "tessella" means "small square" (from ''tessera'', square, which in turn is from the Greek word τέσσερα for ''four''). It corresponds to the everyday term ''tiling'', which refers to applications of tessellations, often made of glazed clay.
Overview
Tessellation in two dimensions, also called planar tiling, is a topic in geometry that studies how shapes, known as ''tiles'', can be arranged to fill a plane without any gaps, according to a given set of rules. These rules can be varied. Common ones are that there must be no gaps between tiles, and that no corner of one tile can lie along the edge of another. The tessellations created by bonded brickwork do not obey this rule. Among those that do, a
regular tessellation
Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his ''Harmonices Mundi'' (Latin: ''The Harmony of the World'', 1619).
Notation of Eucli ...
has both identical regular tiles and identical regular corners or vertices, having the same angle between adjacent edges for every tile. There are only three shapes that can form such regular tessellations: the equilateral triangle, square and the regular hexagon. Any one of these three shapes can be duplicated infinitely to fill a plane with no gaps.
Many other types of tessellation are possible under different constraints. For example, there are eight types of semi-regular tessellation, made with more than one kind of regular polygon but still having the same arrangement of polygons at every corner. Irregular tessellations can also be made from other shapes such as pentagons, polyominoes and in fact almost any kind of geometric shape. The artist M. C. Escher is famous for making tessellations with irregular interlocking tiles, shaped like animals and other natural objects. If suitable contrasting colours are chosen for the tiles of differing shape, striking patterns are formed, and these can be used to decorate physical surfaces such as church floors.
More formally, a tessellation or tiling is a cover of the Euclidean plane by a countable number of closed sets, called ''tiles'', such that the tiles intersect only on their boundaries. These tiles may be polygons or any other shapes. Many tessellations are formed from a finite number of prototiles in which all tiles in the tessellation are congruent to the given prototiles. If a geometric shape can be used as a prototile to create a tessellation, the shape is said to ''tessellate'' or to ''tile the plane''. The Conway criterion is a sufficient but not necessary set of rules for deciding if a given shape tiles the plane periodically without reflections: some tiles fail the criterion but still tile the plane. No general rule has been found for determining if a given shape can tile the plane or not, which means there are many unsolved problems concerning tessellations.
Mathematically, tessellations can be extended to spaces other than the Euclidean plane. The
Swiss
Swiss may refer to:
* the adjectival form of Switzerland
* Swiss people
Places
* Swiss, Missouri
* Swiss, North Carolina
*Swiss, West Virginia
* Swiss, Wisconsin
Other uses
*Swiss-system tournament, in various games and sports
*Swiss Internation ...
geometerLudwig Schläfli pioneered this by defining ''polyschemes'', which mathematicians nowadays call polytopes. These are the analogues to polygons and polyhedra in spaces with more dimensions. He further defined the
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
notation to make it easy to describe polytopes. For example, the Schläfli symbol for an equilateral triangle is , while that for a square is . The Schläfli notation makes it possible to describe tilings compactly. For example, a tiling of regular hexagons has three six-sided polygons at each vertex, so its Schläfli symbol is .
Other methods also exist for describing polygonal tilings. When the tessellation is made of regular polygons, the most common notation is the vertex configuration, which is simply a list of the number of sides of the polygons around a vertex. The square tiling has a vertex configuration of 4.4.4.4, or 44. The tiling of regular hexagons is noted 6.6.6, or 63.
In mathematics
Introduction to tessellations
Mathematicians use some technical terms when discussing tilings. An '' edge'' is the intersection between two bordering tiles; it is often a straight line. A '' vertex'' is the point of intersection of three or more bordering tiles. Using these terms, an ''isogonal'' or vertex-transitive tiling is a tiling where every vertex point is identical; that is, the arrangement of polygons about each vertex is the same. The fundamental region is a shape such as a rectangle that is repeated to form the tessellation. For example, a regular tessellation of the plane with squares has a meeting of four squares at every vertex.
The sides of the polygons are not necessarily identical to the edges of the tiles. An edge-to-edge tiling is any polygonal tessellation where adjacent tiles only share one full side, i.e., no tile shares a partial side or more than one side with any other tile. In an edge-to-edge tiling, the sides of the polygons and the edges of the tiles are the same. The familiar "brick wall" tiling is not edge-to-edge because the long side of each rectangular brick is shared with two bordering bricks.
A ''normal tiling'' is a tessellation for which every tile is
topologically
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
equivalent to a
disk
Disk or disc may refer to:
* Disk (mathematics), a geometric shape
* Disk storage
Music
* Disc (band), an American experimental music band
* ''Disk'' (album), a 1995 EP by Moby
Other uses
* Disk (functional analysis), a subset of a vector sp ...
, the intersection of any two tiles is a connected set or the
empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
, and all tiles are uniformly bounded. This means that a single circumscribing radius and a single inscribing radius can be used for all the tiles in the whole tiling; the condition disallows tiles that are pathologically long or thin.
A is a tessellation in which all tiles are congruent; it has only one prototile. A particularly interesting type of monohedral tessellation is the spiral monohedral tiling. The first spiral monohedral tiling was discovered by Heinz Voderberg in 1936; the
Voderberg tiling
The Voderberg tiling is a mathematical spiral tiling, invented in 1936 by mathematician (1911-1945). It is a monohedral tiling: it consists of only one shape that tessellates the plane with congruent copies of itself. In this case, the prototile ...
has a unit tile that is a nonconvex enneagon. The Hirschhorn tiling, published by Michael D. Hirschhorn and D. C. Hunt in 1985, is a pentagon tiling using irregular pentagons: regular pentagons cannot tile the Euclidean plane as the internal angle of a regular pentagon, , is not a divisor of 2.
An isohedral tiling is a special variation of a monohedral tiling in which all tiles belong to the same transitivity class, that is, all tiles are transforms of the same prototile under the
symmetry
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
group of the tiling. If a prototile admits a tiling, but no such tiling is isohedral, then the prototile is called anisohedral and forms anisohedral tilings.
A
regular tessellation
Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his ''Harmonices Mundi'' (Latin: ''The Harmony of the World'', 1619).
Notation of Eucli ...
is a highly symmetric, edge-to-edge tiling made up of regular polygons, all of the same shape. There are only three regular tessellations: those made up of equilateral triangles, squares, or regular hexagons. All three of these tilings are isogonal and monohedral.
A semi-regular (or Archimedean) tessellation uses more than one type of regular polygon in an isogonal arrangement. There are eight semi-regular tilings (or nine if the mirror-image pair of tilings counts as two). These can be described by their vertex configuration; for example, a semi-regular tiling using squares and regular octagons has the vertex configuration 4.82 (each vertex has one square and two octagons). Many non-edge-to-edge tilings of the Euclidean plane are possible, including the family of Pythagorean tilings, tessellations that use two (parameterised) sizes of square, each square touching four squares of the other size. An edge tessellation is one in which each tile can be reflected over an edge to take up the position of a neighbouring tile, such as in an array of equilateral or isosceles triangles.
Wallpaper groups
Tilings with translational symmetry in two independent directions can be categorized by wallpaper groups, of which 17 exist. It has been claimed that all seventeen of these groups are represented in the
Alhambra
The Alhambra (, ; ar, الْحَمْرَاء, Al-Ḥamrāʾ, , ) is a palace and fortress complex located in Granada, Andalusia, Spain. It is one of the most famous monuments of Islamic architecture and one of the best-preserved palaces of the ...
palace in
Granada
Granada (,, DIN 31635, DIN: ; grc, Ἐλιβύργη, Elibýrgē; la, Illiberis or . ) is the capital city of the province of Granada, in the autonomous communities of Spain, autonomous community of Andalusia, Spain. Granada is located at the fo ...
, Spain. Though this is disputed, the variety and sophistication of the Alhambra tilings have surprised modern researchers. Of the three regular tilings two are in the ''p6m'' wallpaper group and one is in ''p4m''. Tilings in 2D with translational symmetry in just one direction can be categorized by the seven frieze groups describing the possible frieze patterns.
Orbifold notation
In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advanta ...
can be used to describe wallpaper groups of the Euclidean plane.
Aperiodic tilings
Penrose tilings, which use two different quadrilateral prototiles, are the best known example of tiles that forcibly create non-periodic patterns. They belong to a general class of aperiodic tilings, which use tiles that cannot tessellate periodically. The recursive process of substitution tiling is a method of generating aperiodic tilings. One class that can be generated in this way is the rep-tiles; these tilings have surprising
self-replicating
Self-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA is replicated and ca ...
properties. Pinwheel tilings are non-periodic, using a rep-tile construction; the tiles appear in infinitely many orientations. It might be thought that a non-periodic pattern would be entirely without symmetry, but this is not so. Aperiodic tilings, while lacking in translational symmetry, do have symmetries of other types, by infinite repetition of any bounded patch of the tiling and in certain finite groups of rotations or reflections of those patches. A substitution rule, such as can be used to generate some Penrose patterns using assemblies of tiles called rhombs, illustrates scaling symmetry. A Fibonacci word can be used to build an aperiodic tiling, and to study quasicrystals, which are structures with aperiodic order.
Wang tiles are squares coloured on each edge, and placed so that abutting edges of adjacent tiles have the same colour; hence they are sometimes called Wang dominoes. A suitable set of Wang dominoes can tile the plane, but only aperiodically. This is known because any Turing machine can be represented as a set of Wang dominoes that tile the plane if and only if the Turing machine does not halt. Since the halting problem is undecidable, the problem of deciding whether a Wang domino set can tile the plane is also undecidable.
Truchet tiles In information visualization and graphic design, Truchet tiles are square tiles decorated with patterns that are not rotationally symmetric. When placed in a square tiling of the plane, they can form varied patterns, and the orientation of each til ...
are square tiles decorated with patterns so they do not have rotational symmetry; in 1704, Sébastien Truchet used a square tile split into two triangles of contrasting colours. These can tile the plane either periodically or randomly.
Tessellations and colour
Sometimes the colour of a tile is understood as part of the tiling; at other times arbitrary colours may be applied later. When discussing a tiling that is displayed in colours, to avoid ambiguity one needs to specify whether the colours are part of the tiling or just part of its illustration. This affects whether tiles with the same shape but different colours are considered identical, which in turn affects questions of symmetry. The four colour theorem states that for every tessellation of a normal
Euclidean plane
In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
, with a set of four available colours, each tile can be coloured in one colour such that no tiles of equal colour meet at a curve of positive length. The colouring guaranteed by the four colour theorem does not generally respect the symmetries of the tessellation. To produce a colouring which does, it is necessary to treat the colours as part of the tessellation. Here, as many as seven colours may be needed, as in the picture at right.
Tessellations with polygons
Next to the various
tilings by regular polygons
Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his ''Harmonices Mundi'' (Latin: ''The Harmony of the World'', 1619).
Notation of Eucli ...
, tilings by other polygons have also been studied.
Any triangle or quadrilateral (even non-convex) can be used as a prototile to form a monohedral tessellation, often in more than one way. Copies of an arbitrary quadrilateral can form a tessellation with translational symmetry and 2-fold rotational symmetry with centres at the midpoints of all sides. For an asymmetric quadrilateral this tiling belongs to wallpaper group p2. As
fundamental domain
Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each o ...
we have the quadrilateral. Equivalently, we can construct a
parallelogram
In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equa ...
subtended by a minimal set of translation vectors, starting from a rotational centre. We can divide this by one diagonal, and take one half (a triangle) as fundamental domain. Such a triangle has the same area as the quadrilateral and can be constructed from it by cutting and pasting.
If only one shape of tile is allowed, tilings exists with convex ''N''-gons for ''N'' equal to 3, 4, 5 and 6. For , see Pentagonal tiling, for , see
Hexagonal tiling
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling).
English mathemat ...
, for , see
Heptagonal tiling
In geometry, a heptagonal tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of , having three regular heptagons around each vertex.
Images
Related polyhedra and tilings
This tiling is topologically r ...
and for , see
octagonal tiling
In geometry, the octagonal tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of ', having three regular octagons around each vertex. It also has a construction as a truncated order-8 square tiling, t.
U ...
Voronoi or Dirichlet tilings are tessellations where each tile is defined as the set of points closest to one of the points in a discrete set of defining points. (Think of geographical regions where each region is defined as all the points closest to a given city or post office.) The ''Voronoi cell'' for each defining point is a convex polygon. The Delaunay triangulation is a tessellation that is the dual graph of a Voronoi tessellation. Delaunay triangulations are useful in numerical simulation, in part because among all possible triangulations of the defining points, Delaunay triangulations maximize the minimum of the angles formed by the edges. Voronoi tilings with randomly placed points can be used to construct random tilings of the plane.
Tessellations in higher dimensions
Tessellation can be extended to three dimensions. Certain polyhedra can be stacked in a regular crystal pattern to fill (or tile) three-dimensional space, including the
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
(the only
Platonic polyhedron
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
truncated octahedron
In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagon, hexagons and 6 Squa ...
, and triangular, quadrilateral, and hexagonal prisms, among others. Any polyhedron that fits this criterion is known as a plesiohedron, and may possess between 4 and 38 faces. Naturally occurring rhombic dodecahedra are found as crystals of
andradite
Andradite is a mineral species of the garnet group. It is a nesosilicate, with formula Ca3Fe2Si3O12.
Andradite includes three varieties:
* ''Melanite'': Black in color, referred to as "titanian andradite".garnet) and fluorite.
Tessellations in three or more dimensions are called
honeycombs
A honeycomb is a mass of hexagonal prismatic wax cells built by honey bees in their nests to contain their larvae and stores of honey and pollen.
Beekeepers may remove the entire honeycomb to harvest honey. Honey bees consume about of hone ...
. In three dimensions there is just one regular honeycomb, which has eight cubes at each polyhedron vertex. Similarly, in three dimensions there is just one quasiregular honeycomb, which has eight tetrahedra and six octahedra at each polyhedron vertex. However, there are many possible semiregular honeycombs in three dimensions. Uniform honeycombs can be constructed using the Wythoff construction.
The Schmitt-Conway biprism is a convex polyhedron with the property of tiling space only aperiodically.
A
Schwarz triangle
In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere ( spherical tiling), possibly overlapping, through reflections in its edges. They were classified in .
These can be defin ...
non-Euclidean
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geo ...
cells
Cell most often refers to:
* Cell (biology), the functional basic unit of life
Cell may also refer to:
Locations
* Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact
convex uniform honeycomb
In geometry, a convex uniform honeycomb is a uniform polytope, uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex polyhedron, convex uniform polyhedron, uniform polyhedral cells.
Twenty-eight such honey ...
permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or proc ...
In architecture, tessellations have been used to create decorative motifs since ancient times. Mosaic tilings often had geometric patterns. Later civilisations also used larger tiles, either plain or individually decorated. Some of the most decorative were the
Moorish
The term Moor, derived from the ancient Mauri, is an exonym first used by Christian Europeans to designate the Muslim inhabitants of the Maghreb, the Iberian Peninsula, Sicily and Malta during the Middle Ages.
Moors are not a distinct or se ...
Alhambra
The Alhambra (, ; ar, الْحَمْرَاء, Al-Ḥamrāʾ, , ) is a palace and fortress complex located in Granada, Andalusia, Spain. It is one of the most famous monuments of Islamic architecture and one of the best-preserved palaces of the ...
and La Mezquita.
Tessellations frequently appeared in the graphic art of M. C. Escher; he was inspired by the Moorish use of symmetry in places such as the Alhambra when he visited Spain in 1936. Escher made four " Circle Limit" drawings of tilings that use hyperbolic geometry. For his woodcut "Circle Limit IV" (1960), Escher prepared a pencil and ink study showing the required geometry. Escher explained that "No single component of all the series, which from infinitely far away rise like rockets perpendicularly from the limit and are at last lost in it, ever reaches the boundary line."
Tessellated designs often appear on textiles, whether woven, stitched in or printed. Tessellation patterns have been used to design interlocking motifs of patch shapes in quilts.
Tessellations are also a main genre in origami (paper folding), where pleats are used to connect molecules such as twist folds together in a repeating fashion.
micro
Micro may refer to:
Measurement
* micro- (μ), a metric prefix denoting a factor of 10−6
Places
* Micro, North Carolina, town in U.S.
People
* DJ Micro, (born Michael Marsicano) an American trance DJ and producer
*Chii Tomiya (都宮 ちい ...
The honeycomb is a well-known example of tessellation in nature with its hexagonal cells.
In botany, the term "tessellate" describes a checkered pattern, for example on a flower petal, tree bark, or fruit. Flowers including the fritillary and some species of ''Colchicum'' are characteristically tessellate.
Many patterns in nature are formed by cracks in sheets of materials. These patterns can be described by Gilbert tessellations, also known as random crack networks. The Gilbert tessellation is a mathematical model for the formation of mudcracks, needle-like crystals, and similar structures. The model, named after Edgar Gilbert, allows cracks to form starting from randomly scattered over the plane; each crack propagates in two opposite directions along a line through the initiation point, its slope chosen at random, creating a tessellation of irregular convex polygons. Basaltic
lava flow
Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or und ...
s often display columnar jointing as a result of contraction forces causing cracks as the lava cools. The extensive crack networks that develop often produce hexagonal columns of lava. One example of such an array of columns is the Giant's Causeway in Northern Ireland. Tessellated pavement, a characteristic example of which is found at Eaglehawk Neck on the Tasman Peninsula of Tasmania, is a rare sedimentary rock formation where the rock has fractured into rectangular blocks.
Other natural patterns occur in foams; these are packed according to Plateau's laws, which require minimal surfaces. Such foams present a problem in how to pack cells as tightly as possible: in 1887, Lord Kelvin proposed a packing using only one solid, the bitruncated cubic honeycomb with very slightly curved faces. In 1993, Denis Weaire and Robert Phelan proposed the Weaire–Phelan structure, which uses less surface area to separate cells of equal volume than Kelvin's foam.
In puzzles and recreational mathematics
Tessellations have given rise to many types of tiling puzzle, from traditional jigsaw puzzles (with irregular pieces of wood or cardboard) and the tangram to more modern puzzles which often have a mathematical basis. For example, polyiamonds and polyominoes are figures of regular triangles and squares, often used in tiling puzzles. Authors such as Henry Dudeney and Martin Gardner have made many uses of tessellation in recreational mathematics. For example, Dudeney invented the hinged dissection, while Gardner wrote about the rep-tile, a shape that can be
dissected
Dissection (from Latin ' "to cut to pieces"; also called anatomization) is the dismembering of the body of a deceased animal or plant to study its anatomical structure. Autopsy is used in pathology and forensic medicine to determine the cause ...
into smaller copies of the same shape. Inspired by Gardner's articles in Scientific American, the amateur mathematician Marjorie Rice found four new tessellations with pentagons. Squaring the square is the problem of tiling an integral square (one whose sides have integer length) using only other integral squares. An extension is squaring the plane, tiling it by squares whose sizes are all natural numbers without repetitions; James and Frederick Henle proved that this was possible.
Examples
File:Tile 3,6.svg, Triangular tiling, one of the three regular tilings of the plane.
File:Academ Periodic tiling where eighteen triangles encircle each hexagon.svg, Snub hexagonal tiling, a semiregular tiling of the plane
File:Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg,
Floret pentagonal tiling
In geometry, the snub hexagonal tiling (or ''snub trihexagonal tiling'') is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol ''sr''. The snub tetrahexagonal tiling is a r ...
, dual to a semiregular tiling and one of 15 monohedral pentagon tilings.
File:A variation on a tiling in the Alhambra of Spain.svg, All tiling elements are identical pseudo‑triangles by disregarding their colors and ornaments.
File:Voderberg.png, The
Voderberg tiling
The Voderberg tiling is a mathematical spiral tiling, invented in 1936 by mathematician (1911-1945). It is a monohedral tiling: it consists of only one shape that tessellates the plane with congruent copies of itself. In this case, the prototile ...
Tegula (open-source software for exploring two-dimensional tilings of the plane, sphere and hyperbolic plane; includes databases containing millions of tilings)
(good bibliography, drawings of regular, semiregular and demiregular tessellations)
*Dirk Frettlöh and Edmund Harriss. Tilings Encyclopedia (extensive information on substitution tilings, including drawings, people, and references)
Tessellations.org (how-to guides, Escher tessellation gallery, galleries of tessellations by other artists, lesson plans, history)
* (list of web resources including articles and galleries)
{{Good article
SymmetryMosaic