Thermal Laser Epitaxy
   HOME

TheInfoList



OR:

Thermal laser epitaxy (TLE) is a
physical vapor deposition Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polym ...
technique that utilizes irradiation from
continuous-wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or particle ...
lasers A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
to heat sources locally for growing
films A film, also known as a movie or motion picture, is a work of Visual arts, visual art that simulates experiences and otherwise communicates ideas, stories, perceptions, emotions, or atmosphere through the use of moving images that are gen ...
on a substrate. This technique can be performed under
ultra-high vacuum Ultra-high vacuum (often spelled ultrahigh in American English, UHV) is the vacuum regime characterised by pressures lower than about . UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of ...
pressure or in the presence of a background atmosphere, such as
ozone Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
, to deposit oxide films. TLE operates at power densities between 104 – 106 W/cm2, which results in
evaporation Evaporation is a type of vaporization that occurs on the Interface (chemistry), surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evapora ...
or sublimation of the source material, with no plasma or high-energy particle species being produced. Despite operating at comparatively low power densities, TLE is capable of depositing many materials with low
vapor pressures Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indicatio ...
, including
refractory metals Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definitions of which elements belong to this group di ...
, a process that is challenging to perform with
molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
.


Physical process

TLE uses continuous-wave lasers (typically with a wavelength of around 1000 nm) located outside the vacuum chamber to heat sources of material in order to generate a flux of vapor via evaporation or sublimation. Owing to the localized nature of the heat induced by the laser, a portion of the source may be transformed into a
liquid Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to th ...
state while the rest remains solid, such that the source acts as its own crucible. The strong absorption of light causes the laser-induced heat to be highly localized via the small diameter of the laser beam, which can also have the effect of confining the heat to the axis of the source. The resulting absorption corresponds to a typical photon penetration depth on the order of 2 nm due to the high absorption coefficients of α ~ 105 cm−1 of many materials. Heat loss via
conduction Conductor or conduction may refer to: Biology and medicine * Bone conduction, the conduction of sound to the inner ear * Conduction aphasia, a language disorder Mathematics * Conductor (ring theory) * Conductor of an abelian variety * Condu ...
and
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
further localizes the high-
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
region close to the irradiated surface of the source. The localized character of the heating enables many materials to be grown by TLE from freestanding sources without a crucible. Owing to the direct transfer of energy from the laser to the source, TLE is more efficient than other evaporation techniques such as evaporation and
molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
, which typically rely on wire-based Joule heaters to reach high temperatures. By heating the source, a flux of vapor is produced, the pressure of which frequently has an approximately
exponential Exponential may refer to any of several mathematical topics related to exponentiation, including: * Exponential function, also: **Matrix exponential, the matrix analogue to the above *Exponential decay, decrease at a rate proportional to value * Ex ...
relation to temperature. The vapor is then deposited onto a laser-heated substrate. The very high substrate temperatures achievable by laser heating allow the use of
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
-controlled growth modes, similar to
molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
, ensuring precise control of the
stoichiometry Stoichiometry () is the relationships between the masses of reactants and Product (chemistry), products before, during, and following chemical reactions. Stoichiometry is based on the law of conservation of mass; the total mass of reactants must ...
and temperature of the deposited film. This precise control is valuable for growing thin-film heterostructures of complex materials, such as high-''T''c superconductors. By positioning all lasers outside of the evaporation chamber, contamination can be reduced compared to using ''in situ'' heaters, resulting in highly pure deposited films. The deposition rate of the vapor impinging upon the substrate is controlled by adjusting the power of the incident source laser. The deposition rate frequently increases exponentially with source temperature, which in turn increases linearly with incident laser power. Stability in the deposition rate may be achieved by continuously moving the laser beam around the source, while compensating for any coating of any laser optics inside the TLE chamber. The gas in the chamber can be incorporated in the deposition film. With the addition of an oxygen or ozone atmosphere, oxide films can readily be grown with TLE at pressures up to 10−2 hPa. Similarly, the addition of an
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
gas source, a wide variety of nitride films can be grown via TLE, including various superconducting nitride compounds like
TiN Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
and NbN.


History

Shortly after the invention of the laser by Theodore Maiman in 1960, it was quickly recognized that a laser could act as a point source to evaporate source material in a vacuum chamber for fabricating thin films. In 1965, Smith and Turner succeeded in depositing thin films using a
ruby laser A ruby laser is a solid-state laser that uses a synthetic ruby crystal as its gain medium. The first working laser was a ruby laser made by Theodore H. "Ted" Maiman at Hughes Research Laboratories on May 16, 1960. Ruby lasers produce pulses of ...
, after which Groh deposited thin films using a continuous-wave CO2 laser in 1968. Further work demonstrated that laser-induced evaporation is an effective way to deposit dielectric and
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
films. However, issues occurred with regard to stoichiometry and the uniformity of the deposited films, thus diminishing their quality compared to films deposited by other techniques. Experiments to investigate the deposition of thin films using a pulsed laser at high power densities laid the foundation for
pulsed laser deposition Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited. This material is vaporized from the ...
, an extremely successful growth technique that is widely used today. Experiments utilizing continuous-wave lasers continued to be performed throughout the latter half of the twentieth century, highlighting the many advantages of continuous-wave laser evaporation including low power densities, which can reduce surface damage to sensitive films. It proved challenging to achieve congruent evaporation from compound sources using continuous-wave lasers, and film deposition was typically limited to sources with high vapor pressures due to the low continuous wave power densities available. In 2019, the evaporation of sources using continuous-wave lasers was rediscovered at the
Max Planck Institute for Solid State Research The Max Planck Institute for Solid State Research (German: ''Max-Planck-Institut für Festkörperforschung'') was founded in 1969 and is one of the 84 institutes of the Max Planck Society. It is located on a campus in Stuttgart, together with th ...
and dubbed "thermal laser epitaxy". This new technique uses elemental sources illuminated by high-power continuous-wave lasers (typically with peak powers around 1 kW at a wavelength of 1000 nm), thus allowing the deposition of low-vapor-pressure materials such as
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and
tungsten Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...
while avoiding issues with congruent evaporation from compound sources.


References

{{reflist


External links

Thermal Laser Epitaxy - Max Planck Institute for Solid State Research
Physical vapor deposition techniques Thin film deposition Semiconductor device fabrication Crystallography Methods of crystal growth