Thallium-201
   HOME

TheInfoList



OR:

Thallium Thallium is a chemical element; it has Symbol (chemistry), symbol Tl and atomic number 81. It is a silvery-white post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Che ...
(81Tl) has 42
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s with
atomic mass Atomic mass ( or ) is the mass of a single atom. The atomic mass mostly comes from the combined mass of the protons and neutrons in the nucleus, with minor contributions from the electrons and nuclear binding energy. The atomic mass of atoms, ...
es that range from 176 to 217. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
with a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or
observationally stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
, meaning that they are predicted to be radioactive but no actual decay has been observed. Thallium-202 (half-life 12.23 days) can be made in a cyclotron while thallium-204 (half-life 3.78 years) is made by the
neutron activation Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emi ...
of stable thallium in a
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
. In the fully ionized state, the isotope 205Tl81+ becomes beta-radioactive, undergoing bound-state β decay to 205Pb81+ with a half-life of days, but 203Tl remains stable. 205Tl is the decay product of
bismuth-209 Bismuth-209 (Bi) is an isotope of bismuth, with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass unit ...
, an isotope that was once thought to be stable but is now known to undergo
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
with an extremely long half-life of 2.01×1019 y. 205Tl is at the end of the
neptunium Neptunium is a chemical element; it has chemical symbol, symbol Np and atomic number 93. A radioactivity, radioactive actinide metal, neptunium is the first transuranic element. It is named after Neptune, the planet beyond Uranus in the Solar Syste ...
series Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used i ...
decay chain.


List of isotopes

, -id=Thallium-176 , rowspan=2, 176Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 95 , rowspan=2, 176.000628(89) , rowspan=2, , p (50%) , 175Hg , rowspan=2, (3−,4−) , rowspan=2, , rowspan=2, , - , α (50%) , 172Au , -id=Thallium-176m , rowspan=2 style="text-indent:1em" , 176mTl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 671 keV , rowspan=2, , p (50%) , 175Hg , rowspan=2, , rowspan=2, , rowspan=2, , - , α (50%) , 172mAu , -id=Thallium-177 , rowspan=2, 177Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 96 , rowspan=2, 176.996414(23) , rowspan=2, 18(5) ms , α (73%) , 173Au , rowspan=2, (1/2+) , rowspan=2, , rowspan=2, , - , p (27%) , 176Hg , -id=Thallium-177m , rowspan=2 style="text-indent:1em" , 177mTl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 807(18) keV , rowspan=2, 230(40) μs , p (51%) , 176Hg , rowspan=2, (11/2−) , rowspan=2, , rowspan=2, , - , α (49%) , 173Au , -id=Thallium-178 , rowspan=3, 178Tl , rowspan=3, , rowspan=3 style="text-align:right" , 81 , rowspan=3 style="text-align:right" , 97 , rowspan=3, 177.99505(11)# , rowspan=3, 255(9) ms , α (62%) , 174Au , rowspan=3, (4-,5-) , rowspan=3, , rowspan=3, , - , β+ (38%) , 178Hg , - , β+, SF (0.15%) , (various) , -id=Thallium-179 , rowspan=2, 179Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 98 , rowspan=2, 178.991122(41) , rowspan=2, 437(9) ms , α (60%) , 175Au , rowspan=2, 1/2+ , rowspan=2, , rowspan=2, , - , β+ (40%) , 179Hg , -id=Thallium-179m1 , style="text-indent:1em" , 179m1Tl , , colspan="3" style="text-indent:2em" , 825(10)# keV , 1.41(2) ms , α , 175Au , (11/2−) , , , -id=Thallium-179m2 , style="text-indent:1em" , 179m2Tl , , colspan="3" style="text-indent:2em" , 904.5(9) keV , 119(14) ns , IT , 179Tl , (9/2−) , , , -id=Thallium-180 , rowspan=3, 180Tl , rowspan=3, , rowspan=3 style="text-align:right" , 81 , rowspan=3 style="text-align:right" , 99 , rowspan=3, 179.989919(75) , rowspan=3, 1.09(1) s , β+ (93%) , 180Hg , rowspan=3, (4-) , rowspan=3, , rowspan=3, , - , α (7%) , 176Au , - , β+, SF (0.0032%) , 100Ru, 80Kr , -id=Thallium-181 , rowspan=2, 181Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 100 , rowspan=2, 180.9862600(98) , rowspan=2, 2.9(1) s , β+ (91.4%) , 181Hg , rowspan=2, 1/2+ , rowspan=2, , rowspan=2, , - , α (8.6%) , 177Au , -id=Thallium-181m , rowspan=2 style="text-indent:1em" , 181mTl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 835.9(4) keV , rowspan=2, 1.40(3) ms , IT (99.60%) , 181Tl , rowspan=2, (9/2−) , rowspan=2, , rowspan=2, , - , α (0.40%) , 177Au , -id=Thallium-182 , rowspan=3, 182Tl , rowspan=3, , rowspan=3 style="text-align:right" , 81 , rowspan=3 style="text-align:right" , 101 , rowspan=3, 181.985693(13) , rowspan=3, 1.9(1) s , β+ (<99.41%) , 182Hg , rowspan=3, (4−) , rowspan=3, , rowspan=3, , - , α (>0.49%) , 178Au , - , β+, SF (<3.4%) , 182Hg , -id=Thallium-182m , rowspan=2 style="text-indent:1em" , 182mTlOrder of ground state and isomer is uncertain. , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 50(50)# keV , rowspan=2, 3.1(10) s , β+ (97.5%) , 182Hg , rowspan=2, (7+) , rowspan=2, , rowspan=2, , - , α (2.5%) , 178Au , -id=Thallium-183 , rowspan=2, 183Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 102 , rowspan=2, 182.982193(10) , rowspan=2, 6.9(7) s , β+ (?%) , 183Hg , rowspan=2, 1/2+ , rowspan=2, , rowspan=2, , - , α (?%) , 179Au , -id=Thallium-183m1 , rowspan=3 style="text-indent:1em" , 183m1Tl , rowspan=3, , rowspan=3 colspan="3" style="text-indent:2em" , 628.7(5) keV , rowspan=3, 53.3(3) ms , IT (?%) , 183Tl , rowspan=3, (9/2−) , rowspan=3, , rowspan=3, , - , α (1.5%) , 179Au , - , β+ (?%) , 183Hg , -id=Thallium-183m2 , style="text-indent:1em" , 183m2Tl , , colspan="3" style="text-indent:2em" , 975.3(6) keV , 1.48(10) μs , IT , 183Tl , (13/2+) , , , -id=Thallium-184 , rowspan=2, 184Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 103 , rowspan=2, 183.981875(11) , rowspan=2, 9.5(2) s , β+ (98.78%) , 184Hg , rowspan=2, 2− , rowspan=2, , rowspan=2, , - , α (1.22%) , 180Au , -id=Thallium-184m1 , rowspan=2 style="text-indent:1em" , 184m1Tl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , −50(30) keV , rowspan=2, 10.6(5) s , β+ (99.53%) , 184Hg , rowspan=2, (7+) , rowspan=2, , rowspan=2, , - , α (0.47%) , 180Au , -id=Thallium-184m2 , rowspan=2 style="text-indent:1em" , 184m2Tl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 450(30) keV , rowspan=2, 47.1(7) ms , IT (99.91%) , , rowspan=2, (10−) , rowspan=2, , rowspan=2, , - , α (0.089%) , 180Au , -id=Thallium-185 , 185Tl , , style="text-align:right" , 81 , style="text-align:right" , 104 , 184.978789(22) , 19.5(5) s , β+ , 185Hg , 1/2+ , , , - , -id=Thallium-185m , rowspan=2 style="text-indent:1em" , 185mTl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 454.8(15) keV , rowspan=2, 1.93(8) s , IT , 185Tl , rowspan=2, 9/2− , rowspan=2, , rowspan=2, , - , α (?%) , 181Au , -id=Thallium-186 , rowspan=2, 186Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 105 , rowspan=2, 185.978655(22) , rowspan=2, 3.5(5) s , β+ (?%) , 186Hg , rowspan=2, (2−) , rowspan=2, , rowspan=2, , - , α (?%) , 182Au , -id=Thallium-186m1 , rowspan=2 style="text-indent:1em" , 186m1Tl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 20(40) keV , rowspan=2, 27.5(10) s , β+ (99.99%) , 186Hg , rowspan=2, 7+ , rowspan=2, , rowspan=2, , - , α (0.006%) , 182Au , -id=Thallium-186m2 , rowspan=2 style="text-indent:1em" , 186m2Tl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 390(40) keV , rowspan=2, 3.40(9) s , IT (<94.1%) , 186Tl , rowspan=2, 10− , rowspan=2, , rowspan=2, , - , β+ (>5.9%) , 186Hg , -id=Thallium-187 , 187Tl , , style="text-align:right" , 81 , style="text-align:right" , 106 , 186.9759047(86) , ~51 s , β+ , 187Hg , 1/2+ , , , -id=Thallium-187m1 , rowspan=3 style="text-indent:1em" , 187m1Tl , rowspan=3, , rowspan=3 colspan="3" style="text-indent:2em" , 334(3) keV , rowspan=3, 15.60(12) s , β+ (?%) , 187Hg , rowspan=3, 9/2− , rowspan=3, , rowspan=3, , - , IT (?%) , 187Tl , - , α (0.15%) , 183Au , -id=Thallium-187m2 , style="text-indent:1em" , 187m2Tl , , colspan="3" style="text-indent:2em" , 1875(50)# keV , 1.11(7) μs , IT , 187Tl , , , , -id=Thallium-187m3 , style="text-indent:1em" , 187m3Tl , , colspan="3" style="text-indent:2em" , 2582.5(3) keV , 693(38) ns , IT , 187Tl , 29/2+# , , , -id=Thallium-188 , 188Tl , , style="text-align:right" , 81 , style="text-align:right" , 107 , 187.976021(32) , 71(2) s , β+ , 188Hg , 2−# , , , -id=Thallium-188m1 , style="text-indent:1em" , 188m1Tl , , colspan="3" style="text-indent:2em" , 30(30) keV , 71.5(15) s , β+ , 188Hg , 7+ , , , -id=Thallium-188m2 , style="text-indent:1em" , 188m2Tl , , colspan="3" style="text-indent:2em" , 299(30) keV , 41(4) ms , IT , 188Tl , 9− , , , -id=Thallium-189 , 189Tl , , style="text-align:right" , 81 , style="text-align:right" , 108 , 188.9735735(90) , 2.3(2) min , β+ , 189Hg , 1/2+ , , , -id=Thallium-189m , style="text-indent:1em" , 189mTl , , colspan="3" style="text-indent:2em" , 285(6) keV , 1.4(1) min , β+ , 189Hg , 9/2− , , , -id=Thallium-190 , 190Tl , , style="text-align:right" , 81 , style="text-align:right" , 109 , 189.9738418(78) , 2.6(3) min , β+ , 190Hg , 2− , , , -id=Thallium-190m1 , style="text-indent:1em" , 190m1Tl , , colspan="3" style="text-indent:2em" , 70(7) keV , 3.6(3) min , β+ , 190Hg , 7+ , , , -id=Thallium-190m2 , style="text-indent:1em" , 190m2Tl , , colspan="3" style="text-indent:2em" , 306(10) keV , 60# ms , IT , 190Tl , (9−) , , , -id=Thallium-191 , 191Tl , , style="text-align:right" , 81 , style="text-align:right" , 110 , 190.9717841(79) , 20# min , β+ , 191Hg , 1/2+ , , , -id=Thallium-191m , style="text-indent:1em" , 191mTl , , colspan="3" style="text-indent:2em" , 297(7) keV , 5.22(16) min , β+ , 191Hg , 9/2− , , , -id=Thallium-192 , 192Tl , , style="text-align:right" , 81 , style="text-align:right" , 111 , 191.972225(34) , 9.6(4) min , β+ , 192Hg , 2− , , , -id=Thallium-192m1 , style="text-indent:1em" , 192m1Tl , , colspan="3" style="text-indent:2em" , 196(7) keV , 10.8(2) min , β+ , 192Hg , 7+ , , , -id=Thallium-192m2 , style="text-indent:1em" , 192m2Tl , , colspan="3" style="text-indent:2em" , 447(7) keV , 296(5) ns , IT , 192Tl , (8−) , , , -id=Thallium-192m3 , style="text-indent:1em" , 192m3Tl , , colspan="3" style="text-indent:2em" , 180(40) keV , , α , 188Au , (3+) , , , -id=Thallium-193 , 193Tl , , style="text-align:right" , 81 , style="text-align:right" , 112 , 192.9705020(72) , 21.6(8) min , β+ , 193Hg , 1/2+ , , , -id=Thallium-193m , rowspan=2 style="text-indent:1em" , 193mTl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 372(4) keV , rowspan=2, 2.11(15) min , IT (~75%) , 193Tl , rowspan=2, 9/2− , rowspan=2, , rowspan=2, , - , β+ (~25%) , 193Hg , -id=Thallium-194 , 194Tl , , style="text-align:right" , 81 , style="text-align:right" , 113 , 193.971081(15) , 33.0(5) min , β+ , 194Hg , 2− , , , -id=Thallium-194m , style="text-indent:1em" , 194mTl , , colspan="3" style="text-indent:2em" , 260(14) keV , 32.8(2) min , β+ , 194Hg , 7+ , , , -id=Thallium-195 , 195Tl , , style="text-align:right" , 81 , style="text-align:right" , 114 , 194.969774(12) , 1.16(5) h , β+ , 195Hg , 1/2+ , , , -id=Thallium-195m , style="text-indent:1em" , 195mTl , , colspan="3" style="text-indent:2em" , 482.63(17) keV , 3.6(4) s , IT , 195Tl , 9/2− , , , -id=Thallium-196 , 196Tl , , style="text-align:right" , 81 , style="text-align:right" , 115 , 195.970481(13) , 1.84(3) h , β+ , 196Hg , 2− , , , -id=Thallium-196m , rowspan=2 style="text-indent:1em" , 196mTl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 394.2(5) keV , rowspan=2, 1.41(2) h , β+ (96.2%) , 196Hg , rowspan=2, 7+ , rowspan=2, , rowspan=2, , - , IT (3.8%) , 196Tl , -id=Thallium-197 , 197Tl , , style="text-align:right" , 81 , style="text-align:right" , 116 , 196.969560(15) , 2.84(4) h , β+ , 197Hg , 1/2+ , , , -id=Thallium-197m , style="text-indent:1em" , 197mTl , , colspan="3" style="text-indent:2em" , 608.22(8) keV , 540(10) ms , IT , 197Tl , 9/2− , , , -id=Thallium-198 , 198Tl , , style="text-align:right" , 81 , style="text-align:right" , 117 , 197.9704467(81) , 5.3(5) h , β+ , 198Hg , 2− , , , -id=Thallium-198m1 , rowspan=2 style="text-indent:1em" , 198m1Tl , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 543.6(4) keV , rowspan=2, 1.87(3) h , β+ (55.9%) , 198Hg , rowspan=2, 7+ , rowspan=2, , rowspan=2, , - , IT (44.1%) , 198Tl , -id=Thallium-198m2 , style="text-indent:1em" , 198m2Tl , , colspan="3" style="text-indent:2em" , 686.8(5) keV , 150(40) ns , IT , 198Tl , (5)+ , , , -id=Thallium-198m3 , style="text-indent:1em" , 198m3Tl , , colspan="3" style="text-indent:2em" , 742.4(4) keV , 32.1(10) ms , IT , 198Tl , 10− , , , -id=Thallium-199 , 199Tl , , style="text-align:right" , 81 , style="text-align:right" , 118 , 198.969877(30) , 7.42(8) h , β+ , 199Hg , 1/2+ , , , -id=Thallium-199m , style="text-indent:1em" , 199mTl , , colspan="3" style="text-indent:2em" , 748.87(6) keV , 28.4(2) ms , IT , 199Tl , 9/2− , , , -id=Thallium-200 , 200Tl , , style="text-align:right" , 81 , style="text-align:right" , 119 , 199.9709636(62) , 26.1(1) h , β+ , 200Hg , 2− , , , -id=Thallium-200m1 , style="text-indent:1em" , 200m1Tl , , colspan="3" style="text-indent:2em" , 753.60(24) keV , 34.0(9) ms , IT , 200Tl , 7+ , , , -id=Thallium-200m2 , style="text-indent:1em" , 200m2Tl , , colspan="3" style="text-indent:2em" , 762.00(24) keV , 397(17) ns , IT , 200Tl , 5+ , , , - , 201TlMain isotope used in
scintigraphy Scintigraphy (from Latin ''scintilla'', "spark"), also known as a gamma scan, is a diagnostic test in nuclear medicine, where radioisotopes attached to drugs that travel to a specific organ or tissue (radiopharmaceuticals) are taken internally a ...
, , style="text-align:right" , 81 , style="text-align:right" , 120 , 200.970820(15) , 3.0421(8) d , EC , 201Hg , 1/2+ , , , -id=Thallium-201m , style="text-indent:1em" , 201mTl , , colspan="3" style="text-indent:2em" , 919.16(21) keV , 2.01(7) ms , IT , 201Tl , 9/2− , , , -id=Thallium-202 , 202Tl , , style="text-align:right" , 81 , style="text-align:right" , 121 , 201.9721089(20) , 12.31(8) d , EC , 202Hg , 2− , , , -id=Thallium-202m , style="text-indent:1em" , 202mTl , , colspan="3" style="text-indent:2em" , 950.19(10) keV , 591(3) μs , IT , 202Tl , 7+ , , , -id=Thallium-203 , 203Tl , , style="text-align:right" , 81 , style="text-align:right" , 122 , 202.9723441(13) , colspan=3 align=center,
Observationally Stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
Believed to undergo α decay to 199Au , 1/2+ , 0.29515(44) , , -id=Thallium-203m1 , style="text-indent:1em" , 203m1Tl , , colspan="3" style="text-indent:2em" , 1483.7(9) keV , <1 μs , IT , 203Tl , (9/2−) , , , -id=Thallium-203m2 , style="text-indent:1em" , 203m2Tl , , colspan="3" style="text-indent:2em" , 3565(50)# keV , 7.7(5) μs , IT , 203Tl , (25/2+) , , , -id=Thallium-204 , rowspan=2, 204Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 123 , rowspan=2, 203.9738634(12) , rowspan=2, 3.783(12) y , β (97.08%) , 204Pb , rowspan=2, 2− , rowspan=2, , rowspan=2, , - , EC (2.92%) , 204Hg , -id=Thallium-204m1 , style="text-indent:1em" , 204m1Tl , , colspan="3" style="text-indent:2em" , 1104.1(2) keV , 61.7(10) μs , IT , 204Tl , 7+ , , , -id=Thallium-204m2 , style="text-indent:1em" , 204m2Tl , , colspan="3" style="text-indent:2em" , 2319.0(3) keV , 2.6(2) μs , IT , 204Tl , 12− , , , -id=Thallium-204m3 , style="text-indent:1em" , 204m3Tl , , colspan="3" style="text-indent:2em" , 4391.6(5) keV , 420(30) ns , IT , 204Tl , 18+ , , , -id=Thallium-204m4 , style="text-indent:1em" , 204m4Tl , , colspan="3" style="text-indent:2em" , 6239.4(5) keV , 90(3) ns , IT , 204Tl , 22− , , , -id=Thallium-205 , 205TlFinal decay product of 4n+1
decay chain In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
(the
Neptunium series In nuclear science a decay chain refers to the predictable series of radioactive decay, radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radionuclide, Radioactive isotopes do not usually decay directly ...
)
, , style="text-align:right" , 81 , style="text-align:right" , 124 , 204.9744273(13) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 201Au , 1/2+ , 0.70485(44) , , -id=Thallium-205m1 , style="text-indent:1em" , 205m1Tl , , colspan="3" style="text-indent:2em" , 3290.61(17) keV , 2.6(2) μs , IT , 205Tl , 25/2+ , , , -id=Thallium-205m2 , style="text-indent:1em" , 205m2Tl , , colspan="3" style="text-indent:2em" , 4835.6(15) keV , 235(10) ns , IT , 205Tl , (35/2–) , , , -id=Thallium-206 , 206Tl , Radium E" , style="text-align:right" , 81 , style="text-align:right" , 125 , 205.9761101(14) , 4.202(11) min , β , 206Pb , 0− , TraceIntermediate
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
of 238U
, , -id=Thallium-206m , style="text-indent:1em" , 206mTl , , colspan="3" style="text-indent:2em" , 2643.10(18) keV , 3.74(3) min , IT , 206Tl , (12)– , , , -id=Thallium-207 , 207Tl , Actinium C" , style="text-align:right" , 81 , style="text-align:right" , 126 , 206.9774186(58) , 4.77(2) min , β , 207Pb , 1/2+ , TraceIntermediate
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
of 235U
, , -id=Thallium-207m , style="text-indent:1em" , 207mTl , , colspan="3" style="text-indent:2em" , 1348.18(16) keV , 1.33(11) s , IT , 207Tl , 11/2– , , , -id=Thallium-208 , 208Tl , Thorium C" , style="text-align:right" , 81 , style="text-align:right" , 127 , 207.9820180(20) , 3.053(4) min , β , 208Pb , 5+ , TraceIntermediate
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
of 232Th
, , -id=Thallium-208m , style="text-indent:1em" , 208mTl , , colspan="3" style="text-indent:2em" , 1807(1) keV , 1.3(1) μs , IT , 208Tl , (0–) , , , -id=Thallium-209 , 209Tl , , style="text-align:right" , 81 , style="text-align:right" , 128 , 208.9853517(66) , 2.162(7) min , β , 209Pb , 1/2+ , TraceIntermediate decay product of 237Np , , -id=Thallium-209m , style="text-indent:1em" , 209mTl , , colspan="3" style="text-indent:2em" , 1228.1(20) keV , 146(10) ns , IT , 209Tl , 17/2+ , , , -id=Thallium-210 , rowspan=2, 210Tl , rowspan=2, Radium C″ , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 129 , rowspan=2, 209.990073(12) , rowspan=2, 1.30(3) min , β (99.99%) , 210Pb , rowspan=2, 5+# , rowspan=2, Trace , rowspan=2, , - , β, n (0.009%) , 209Pb , -id=Thallium-210m , style="text-indent:1em" , 210mTl , , colspan="3" style="text-indent:2em" , 1200(200)# keV , 1# min
3 μs, , , (9+,10+) , , , -id=Thallium-211 , rowspan=2, 211Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 130 , rowspan=2, 210.993475(45) , rowspan=2, 81(16) s , β (97.8%) , 211Pb , rowspan=2, 1/2+ , rowspan=2, , rowspan=2, , - , β, n (2.2%) , 210Pb , -id=Thallium-211m , style="text-indent:1em" , 211mTl , , colspan="3" style="text-indent:2em" , 1244(100)# keV , 580(80) ns , IT , 211Tl , 17/2+# , , , -id=Thallium-212 , rowspan=2, 212Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 131 , rowspan=2, 211.99834(22)# , rowspan=2, 31(8) s , β (98.2%) , 212Pb , rowspan=2, (5+) , rowspan=2, , rowspan=2, , - , β, n (1.8%) , 211Pb , -id=Thallium-213 , rowspan=2, 213Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 132 , rowspan=2, 213.001915(29) , rowspan=2, 23.8(44) s , β (92.4%) , 213Pb , rowspan=2, 1/2+# , rowspan=2, , rowspan=2, , - , β, n (7.6%) , 212Pb , -id=Thallium-213m1 , style="text-indent:1em" , 213m1Tl , , colspan="3" style="text-indent:2em" , 680(300)# keV , 4.1(5) μs , IT , 213Tl , , , , -id=Thallium-213m2 , style="text-indent:1em" , 213m2Tl , , colspan="3" style="text-indent:2em" , 1250(100)# keV , 0.6(3) μs , IT , 213Tl , 17/2+# , , , -id=Thallium-214 , rowspan=2, 214Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 133 , rowspan=2, 214.00694(21)# , rowspan=2, 11.0(24) s , β (66%) , 214Pb , rowspan=2, 5+# , rowspan=2, , rowspan=2, , - , β, n (34%) , 213Pb , -id=Thallium-215 , rowspan=2, 215Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 134 , rowspan=2, 215.01077(32)# , rowspan=2, 9.7(38) s , β (95.4%) , 215Pb , rowspan=2, 1/2+# , rowspan=2, , rowspan=2, , - , β, n (4.6%) , 214Pb , -id=Thallium-216 , rowspan=2, 216Tl , rowspan=2, , rowspan=2 style="text-align:right" , 81 , rowspan=2 style="text-align:right" , 135 , rowspan=2, 216.01596(32)# , rowspan=2, 5.9(33) s , β (>88.5%) , 216Pb , rowspan=2, 5+# , rowspan=2, , rowspan=2, , - , β, n (<11.5%) , 215Pb , -id=Thallium-217 , 217Tl , , style="text-align:right" , 81 , style="text-align:right" , 136 , 217.02003(43)# , 2# s
300 ns, , , 1/2+# , ,


Thallium-201

Thallium-201 (201Tl) is a
synthetic radioisotope A synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. Frédéric Joliot-Curie and Irène Joliot-Cu ...
of thallium. It has a half-life of 73 hours and decays by electron capture, emitting X-rays (~70–80 keV), and photons of 135 and 167 keV in 10% total abundance. Thallium-201 is synthesized by the
neutron activation Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emi ...
of stable thallium in a
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
, or by the 203Tl(p, 3n)201Pb nuclear reaction in
cyclotron A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
s, as 201Pb naturally decays to 201Tl afterwards. It is a
radiopharmaceutical Radiopharmaceuticals, or medicinal radiocompounds, are a group of pharmaceutical drugs containing radioactive isotopes. Radiopharmaceuticals can be used as diagnostic and therapeutic agents. Radiopharmaceuticals emit radiation themselves, which ...
, as it has good imaging characteristics without excessive patient radiation dose. It is the most popular isotope used for thallium nuclear
cardiac stress test A cardiac stress test is a cardiological examination that evaluates the cardiovascular system's response to external stress within a controlled clinical setting. This stress response can be induced through physical exercise (usually a treadmill) o ...
s.


See also

Daughter products other than thallium *
Isotopes of bismuth Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as . Although bismuth-209 is now known to be radioactive, i ...
*
Isotopes of mercury There are seven stable isotopes of mercury (80Hg) with 202Hg being the most abundant (29.86%). The longest-lived radioisotopes are 194Hg with a half-life of 444 years, and 203Hg with a half-life of 46.612 days. Most of the remaining 40 radioisot ...
*
Isotopes of gold Gold (79Au) has one stable isotope, 197Au, and 40 radioisotopes, with 195Au being the most stable with a half-life of 186 days. Gold is currently considered the heaviest monoisotopic element. Bismuth formerly held that distinction until alpha-de ...
*
Isotopes of krypton There are 34 known isotopes of krypton (36Kr) with atomic mass numbers from 67 to 103. Naturally occurring krypton is made of five stable isotopes and one () which is slightly radioactive with an extremely long half-life, plus traces of radioisot ...
*
Isotopes of ruthenium Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes (of which two may in the future be found radioactive). Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a ...


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Navbox element isotopes Thallium
Thallium Thallium is a chemical element; it has Symbol (chemistry), symbol Tl and atomic number 81. It is a silvery-white post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Che ...