HOME

TheInfoList



OR:

The term boundary paradox refers to the conflict between traditional, rank-based classification of life and evolutionary thinking. In the hierarchy of ranked categories it is implicitly assumed that the morphological gap is growing along with increasing ranks: two
species A species () is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of Taxonomy (biology), ...
from the same
genus Genus (; : genera ) is a taxonomic rank above species and below family (taxonomy), family as used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In bino ...
are more similar than other two species from different genera in the same
family Family (from ) is a Social group, group of people related either by consanguinity (by recognized birth) or Affinity (law), affinity (by marriage or other relationship). It forms the basis for social order. Ideally, families offer predictabili ...
, these latter two species are more similar than any two species from different families of the same
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
, and so on. However, this requirement may only satisfy for the classification of contemporary organisms; difficulties arise if we wish to classify descendants together with their ancestors. Theoretically, such a classification necessarily involves segmentation of the spatio-temporal continuum of populations into groups with crisp boundaries. However, the problem is not only that many parent populations would separate at species level from their offspring. The truly paradoxical situation is that some between-species boundaries would necessarily coincide with between-genus boundaries, and a few between-genus boundaries with borders between families, and so on. This apparent ambiguity cannot be resolved in Linnaean systems; resolution is only possible if classification is
cladistic Cladistics ( ; from Ancient Greek 'branch') is an approach to biological classification in which organisms are categorized in groups ("clades") based on hypotheses of most recent common ancestry. The evidence for hypothesized relationships is ...
(see below).


Historical background

Jean-Baptiste Lamarck Jean-Baptiste Pierre Antoine de Monet, chevalier de Lamarck (1 August 1744 – 18 December 1829), often known simply as Lamarck (; ), was a French naturalist, biologist, academic, and soldier. He was an early proponent of the idea that biologi ...
, in '' Philosophie zoologique'' (1809), was the first who questioned the objectivity of rank-based classification of life, by saying: Half a century later,
Charles Darwin Charles Robert Darwin ( ; 12 February 1809 – 19 April 1882) was an English Natural history#Before 1900, naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all speci ...
explained that sharp separation of groups of organisms observed at present becomes less obvious if we go back into the past: In his book on
orchid Orchids are plants that belong to the family Orchidaceae (), a diverse and widespread group of flowering plants with blooms that are often colourful and fragrant. Orchids are cosmopolitan plants that are found in almost every habitat on Eart ...
s, Darwin also warned that the system of ranks would not work if we knew more details about past life: Finally,
Richard Dawkins Richard Dawkins (born 26 March 1941) is a British evolutionary biology, evolutionary biologist, zoologist, science communicator and author. He is an Oxford fellow, emeritus fellow of New College, Oxford, and was Simonyi Professor for the Publ ...
has argued recently that and with the following conclusion:


Illustrative models

The paradox may be best illustrated by model diagrams similar to Darwin’s single
evolutionary tree A phylogenetic tree or phylogeny is a graphical representation which shows the evolutionary history between a set of species or taxa during a specific time.Felsenstein J. (2004). ''Inferring Phylogenies'' Sinauer Associates: Sunderland, MA. In o ...
in ''
On the Origin of Species ''On the Origin of Species'' (or, more completely, ''On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life'')The book's full original title was ''On the Origin of Species by M ...
''. In these tree graphs, dots represent populations and edges correspond to parent-offspring relations. The trees are placed into a
coordinate system In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
which is one-dimensional (time) for a single lineage, and two-dimensional (differentiation vs. time) for
cladogenesis Cladogenesis is an evolutionary splitting of a parent species into two distinct species, forming a clade. This event usually occurs when a few organisms end up in new, often distant areas or when environmental changes cause several extinctions, ...
or evolution with divergence. In the single lineage model we now consider a sequence of populations along an extremely long time axis, say several hundred million years, with the last dot representing an extant population. In the figure there is space for a few dots even though edges between adjacent populations are hidden. We could use a second axis to express differentiation, but it is not necessary for our purposes. Here we assume that there is no extinction and all branching events are disregarded (if there were no branches at all, then the changes would correspond to a typical
anagenesis Anagenesis is the gradual evolution of a species that continues to exist as an interbreeding population. This contrasts with cladogenesis, which occurs when branching or splitting occurs, leading to two or more lineages and resulting in separate ...
. Classification of organisms along this sequence into species is shown by small ellipses. If the differences between certain species are judged to be large enough to justify classification into distinct genera, then generic separators must each coincide with a between-species boundary. If differences reach family-level differentiation, which is easy to imagine over the very long time we consider here, the consequence is that a family-level border must overlap with a between-genus and, in turn, a between-species border (gray arrow in the figure). One cannot imagine, however, that a parent and its offspring are so distinct that they should be classified to different families, or even genera – that would be paradoxical. This illustrates Dawkins’ above argumentation on human ancestry at the level of genera, ''
Homo ''Homo'' () is a genus of great ape (family Hominidae) that emerged from the genus ''Australopithecus'' and encompasses only a single extant species, ''Homo sapiens'' (modern humans), along with a number of extinct species (collectively called ...
'' and ''
Australopithecus ''Australopithecus'' (, ; or (, ) is a genus of early hominins that existed in Africa during the Pliocene and Early Pleistocene. The genera ''Homo'' (which includes modern humans), ''Paranthropus'', and ''Kenyanthropus'' evolved from some ''Aus ...
''. Darwin placed emphasis on divergence, that is, when a parent population splits and these offspring populations diverge gradually, each following their own anagenetic sequence potentially with further divergence events. In this case, evolutionary (say morphological) divergence is expressed on a new, horizontal, axis and time becomes the vertical axis. At time point 1 an imaginary taxonomist judges populations A and B to belong to different species, but within the same genus. Their respective descendants, C and D are observed at time 2, and considered to represent two separate genera because their morphological difference is large. The paradox is that while A and C, as well as B and D remain within generic limits but C and D do not, so that ancestors cannot be classified together with their descendants meaningfully in a Linnaean system. This figure illustrates the problem Darwin has discussed in the
fish A fish (: fish or fishes) is an aquatic animal, aquatic, Anamniotes, anamniotic, gill-bearing vertebrate animal with swimming fish fin, fins and craniate, a hard skull, but lacking limb (anatomy), limbs with digit (anatomy), digits. Fish can ...
and
reptile Reptiles, as commonly defined, are a group of tetrapods with an ectothermic metabolism and Amniotic egg, amniotic development. Living traditional reptiles comprise four Order (biology), orders: Testudines, Crocodilia, Squamata, and Rhynchocepha ...
example. Let us consider a hypothetical evolutionary tree with four recent species, A to D, classified into two genera that are fairly distant from each other morphologically. We assume, further, that from the
fossil record A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
we only know their common ancestor, E, representing yet another genus for a taxonomist because it takes “intermediate” position between the other two – yet considerably different from both. All other forms went extinct; therefore we have classification of these five species into three genera, which would be illogical if more fossils were known. This illustrates Darwin’s and Dawkins’ examples on the role of gaps in the fossil record in classification – and nomenclature.


Resolution

As demonstrated, given a
Darwinian evolution ''Darwinism'' is a term used to describe a theory of biological evolution developed by the English naturalist Charles Darwin (1809–1882) and others. The theory states that all species of organisms arise and develop through the natural sele ...
ary model, descendants and their ancestors cannot be classified together within the system of Linnean ranks. Solution is provided by cladistic classification in which each group is composed of an ancestor and all of its descendant populations, a condition called
monophyly In biological cladistics for the classification of organisms, monophyly is the condition of a taxonomic grouping being a clade – that is, a grouping of organisms which meets these criteria: # the grouping contains its own most recent comm ...
. In the above models
monophyletic In biological cladistics for the classification of organisms, monophyly is the condition of a taxonomic grouping being a clade – that is, a grouping of organisms which meets these criteria: # the grouping contains its own most recent co ...
groups may be obtained by cutting a branch (subtree) from the tree at places where, for instance, new apomorphic (evolutionary derived) characters appear. For these groups there is no need to consider how much change occurred between members of one group as compared to those of the other.


See also

*
Clade In biology, a clade (), also known as a Monophyly, monophyletic group or natural group, is a group of organisms that is composed of a common ancestor and all of its descendants. Clades are the fundamental unit of cladistics, a modern approach t ...
*
Sister group In phylogenetics, a sister group or sister taxon, also called an adelphotaxon, comprises the closest relative(s) of another given unit in an evolutionary tree. Definition The expression is most easily illustrated by a cladogram: Taxon A and ...
*
Temporal paradox (paleontology) John Alan Feduccia (born April 25, 1943) is a paleornithology, paleornithologist specializing in the Origin of birds, origins and phylogeny of birds. He is S. K. Heninger Distinguished Professor Emeritus at the University of North Carolina at Ch ...


References

{{reflist Biological classification Phylogenetics History of biology