HOME

TheInfoList



OR:

In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map
degenerates Degenerates is a musical group which originated in Grosse Pointe Park, Michigan in 1979, during the formative years of the Detroit hardcore scene. The group predated the Process of Elimination EP, which some reviewers view as the beginning of the ...
at a point of a space, with some collapsing of the fibers of the mapping.


In complex analysis

In
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
, the basic model can be taken as the ''z'' → ''z''''n'' mapping in the complex plane, near ''z'' = 0. This is the standard local picture in Riemann surface theory, of ramification of order ''n''. It occurs for example in the Riemann–Hurwitz formula for the effect of mappings on the genus. See also branch point.


In algebraic topology

In a covering map the Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The ''z'' → ''z''''n'' mapping shows this as a local pattern: if we exclude 0, looking at 0 < , ''z'', < 1 say, we have (from the homotopy point of view) the circle mapped to itself by the ''n''-th power map (Euler–Poincaré characteristic 0), but with the whole
disk Disk or disc may refer to: * Disk (mathematics), a geometric shape * Disk storage Music * Disc (band), an American experimental music band * ''Disk'' (album), a 1995 EP by Moby Other uses * Disk (functional analysis), a subset of a vector sp ...
the Euler–Poincaré characteristic is 1, ''n'' â€“ 1 being the 'lost' points as the ''n'' sheets come together at ''z'' = 0. In geometric terms, ramification is something that happens in ''codimension two'' (like
knot theory In the mathematical field of topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are ...
, and
monodromy In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity. As the name implies, the fundamental meaning of ''mono ...
); since ''real'' codimension two is ''complex'' codimension one, the local complex example sets the pattern for higher-dimensional
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a com ...
s. In complex analysis, sheets can't simply fold over along a line (one variable), or codimension one subspace in the general case. The ramification set (branch locus on the base, double point set above) will be two real dimensions lower than the ambient
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
, and so will not separate it into two 'sides', locally―there will be paths that trace round the branch locus, just as in the example. In
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
over any field, by analogy, it also happens in algebraic codimension one.


In algebraic number theory


In algebraic extensions of \mathbb

Ramification in
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
means a prime ideal factoring in an extension so as to give some repeated prime ideal factors. Namely, let \mathcal_K be the
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often deno ...
of an
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
K, and \mathfrak a
prime ideal In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with ...
of \mathcal_K. For a field extension L/K we can consider the ring of integers \mathcal_L (which is the
integral closure In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a'j'' in ''A'' such that :b^n + a_ b^ + \cdots + a_1 b + a_0 = 0. That is to say, ''b'' is ...
of \mathcal_K in L), and the ideal \mathfrak\mathcal_L of \mathcal_L. This ideal may or may not be prime, but for finite :K/math>, it has a factorization into prime ideals: :\mathfrak\cdot \mathcal_L = \mathfrak_1^\cdots\mathfrak_k^ where the \mathfrak_i are distinct prime ideals of \mathcal_L. Then \mathfrak is said to ramify in L if e_i > 1 for some i; otherwise it is . In other words, \mathfrak ramifies in L if the ramification index e_i is greater than one for some \mathfrak_i. An equivalent condition is that \mathcal_L/\mathfrak\mathcal_L has a non-zero nilpotent element: it is not a product of finite fields. The analogy with the Riemann surface case was already pointed out by
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
and Heinrich M. Weber in the nineteenth century. The ramification is encoded in K by the
relative discriminant In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field. More specifically, it is proportional to the squared volume ...
and in L by the
relative different In algebraic number theory, the different ideal (sometimes simply the different) is defined to measure the (possible) lack of duality in the ring of integers of an algebraic number field ''K'', with respect to the field trace. It then encodes the ...
. The former is an ideal of \mathcal_K and is divisible by \mathfrak if and only if some ideal \mathfrak_i of \mathcal_L dividing \mathfrak is ramified. The latter is an ideal of \mathcal_L and is divisible by the prime ideal \mathfrak_i of \mathcal_L precisely when \mathfrak_i is ramified. The ramification is tame when the ramification indices e_i are all relatively prime to the residue characteristic ''p'' of \mathfrak, otherwise wild. This condition is important in Galois module theory. A finite generically étale extension B/A of Dedekind domains is tame if and only if the trace \operatorname: B \to A is surjective.


In local fields

The more detailed analysis of ramification in number fields can be carried out using extensions of the p-adic numbers, because it is a ''local'' question. In that case a quantitative measure of ramification is defined for Galois extensions, basically by asking how far the Galois group moves field elements with respect to the metric. A sequence of ramification groups is defined, reifying (amongst other things) ''wild'' (non-tame) ramification. This goes beyond the geometric analogue.


In algebra

In valuation theory, the ramification theory of valuations studies the set of extensions of a valuation of a field ''K'' to an extension field of ''K''. This generalizes the notions in algebraic number theory, local fields, and Dedekind domains.


In algebraic geometry

There is also corresponding notion of unramified morphism in algebraic geometry. It serves to define étale morphisms. Let f: X \to Y be a morphism of schemes. The support of the quasicoherent sheaf \Omega_ is called the ramification locus of f and the image of the ramification locus, f\left( \operatorname \Omega_ \right), is called the branch locus of f. If \Omega_=0 we say that f is formally unramified and if f is also of locally finite presentation we say that f is
unramified In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) ...
(see ).


See also

* Eisenstein polynomial * Newton polygon * Puiseux expansion * Branched covering


References

* *


External links

* {{planetmath_reference, urlname=SplittingAndRamificationInNumberFieldsAndGaloisExtensions, title=Splitting and ramification in number fields and Galois extensions Algebraic number theory Algebraic topology Complex analysis