HOME

TheInfoList



OR:

Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
without the use of
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the Position (geometry), position of the Point (geometry), points or other geometric elements on a manifold such as ...
. It relies on the
axiomatic method In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establis ...
for proving all results from a few basic properties initially called postulates, and at present called
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s. After the 17th-century introduction by
René Descartes René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramou ...
of the coordinate method, which was called
analytic geometry In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineering, and als ...
, the term "synthetic geometry" was coined to refer to the older methods that were, before Descartes, the only known ones. According to
Felix Klein Felix Christian Klein (; ; 25 April 1849 – 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations betwe ...
Synthetic geometry is that which studies figures as such, without recourse to formulae, whereas analytic geometry consistently makes use of such formulae as can be written down after the adoption of an appropriate system of coordinates.
The first systematic approach for synthetic geometry is Euclid's ''Elements''. However, it appeared at the end of the 19th century that
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
's postulates were not sufficient for characterizing geometry. The first complete axiom system for geometry was given only at the end of the 19th century by
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
. At the same time, it appeared that both synthetic methods and analytic methods can be used to build geometry. The fact that the two approaches are equivalent has been proved by
Emil Artin Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrians, Austrian mathematician of Armenians, Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number t ...
in his book '' Geometric Algebra''. Because of this equivalence, the distinction between synthetic and analytic geometry is no more in use, except at elementary level, or for geometries that are not related to any sort of numbers, such as some finite geometries and non-Desarguesian geometry.


Logical synthesis

The process of logical synthesis begins with some arbitrary but definite starting point. This starting point is the introduction of primitive notions or primitives and axioms about these primitives: * Primitives are the most basic ideas. Typically they include both objects and relationships. In geometry, the objects are things such as ''points'', ''lines'' and ''planes'', while a fundamental relationship is that of ''incidence'' – of one object meeting or joining with another. The terms themselves are undefined.
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosophy of mathematics, philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad ...
once remarked that instead of points, lines and planes one might just as well talk of tables, chairs and beer mugs, the point being that the primitive terms are just empty placeholders and have no intrinsic properties. *
Axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s are statements about these primitives; for example, ''any two points are together incident with just one line'' (i.e. that for any two points, there is just one line which passes through both of them). Axioms are assumed true, and not proven. They are the ''building blocks'' of geometric concepts, since they specify the properties that the primitives have. From a given set of axioms, synthesis proceeds as a carefully constructed logical argument. When a significant result is proved rigorously, it becomes a
theorem In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to esta ...
.


Properties of axiom sets

There is no fixed axiom set for geometry, as more than one consistent set can be chosen. Each such set may lead to a different geometry, while there are also examples of different sets giving the same geometry. With this plethora of possibilities, it is no longer appropriate to speak of "geometry" in the singular. Historically, Euclid's
parallel postulate In geometry, the parallel postulate is the fifth postulate in Euclid's ''Elements'' and a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: If a line segment intersects two straight lines forming two interior ...
has turned out to be independent of the other axioms. Simply discarding it gives absolute geometry, while negating it yields
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
. Other consistent axiom sets can yield other geometries, such as projective, elliptic, spherical or
affine Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a Affinity_(law)#Terminology, relative by marriage in law and anthropology * Affine cipher, a special case of the more general substi ...
geometry. Axioms of continuity and "betweenness" are also optional, for example, discrete geometries may be created by discarding or modifying them. Following the Erlangen program of Klein, the nature of any given geometry can be seen as the connection between
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
and the content of the propositions, rather than the style of development.


History

Euclid's original treatment remained unchallenged for over two thousand years, until the simultaneous discoveries of the non-Euclidean geometries by
Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, Geodesy, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observat ...
, Bolyai, Lobachevsky and Riemann in the 19th century led mathematicians to question Euclid's underlying assumptions. One of the early French analysts summarized synthetic geometry this way: :''The Elements'' of Euclid are treated by the synthetic method. This author, after having posed the ''axioms'', and formed the requisites, established the propositions which he proves successively being supported by that which preceded, proceeding always from the ''simple to compound'', which is the essential character of synthesis. The heyday of synthetic geometry can be considered to have been the 19th century, when analytic methods based on
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the Position (geometry), position of the Point (geometry), points or other geometric elements on a manifold such as ...
and
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
were ignored by some geometers such as Jakob Steiner, in favor of a purely synthetic development of
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
. For example, the treatment of the
projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane (geometry), plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, paral ...
starting from axioms of incidence is actually a broader theory (with more
models A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided int ...
) than is found by starting with a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
of dimension three. Projective geometry has in fact the simplest and most elegant synthetic expression of any geometry. In his Erlangen program,
Felix Klein Felix Christian Klein (; ; 25 April 1849 – 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations betwe ...
played down the tension between synthetic and analytic methods: ::On the Antithesis between the Synthetic and the Analytic Method in Modern Geometry: :The distinction between modern synthesis and modern analytic geometry must no longer be regarded as essential, inasmuch as both subject-matter and methods of reasoning have gradually taken a similar form in both. We choose therefore in the text as common designation of them both the term projective geometry. Although the synthetic method has more to do with space-perception and thereby imparts a rare charm to its first simple developments, the realm of space-perception is nevertheless not closed to the analytic method, and the formulae of analytic geometry can be looked upon as a precise and perspicuous statement of geometrical relations. On the other hand, the advantage to original research of a well formulated analysis should not be underestimated, - an advantage due to its moving, so to speak, in advance of the thought. But it should always be insisted that a mathematical subject is not to be considered exhausted until it has become intuitively evident, and the progress made by the aid of analysis is only a first, though a very important, step. The close axiomatic study of
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
led to the construction of the Lambert quadrilateral and the Saccheri quadrilateral. These structures introduced the field of non-Euclidean geometry where Euclid's parallel axiom is denied.
Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, Geodesy, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observat ...
, Bolyai and Lobachevski independently constructed
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
, where parallel lines have an angle of parallelism that depends on their separation. This study became widely accessible through the Poincaré disc model where
motion In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an o ...
s are given by
Möbius transformation In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex number, complex variable ; here the coefficients , , , are complex numbers satisfying . Geometrically ...
s. Similarly, Riemann, a student of Gauss's, constructed
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
, of which
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
is a particular case. Another example concerns inversive geometry as advanced by Ludwig Immanuel Magnus, which can be considered synthetic in spirit. The closely related operation of reciprocation expresses analysis of the plane. Karl von Staudt showed that algebraic axioms, such as
commutativity In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a p ...
and
associativity In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replaceme ...
of addition and multiplication, were in fact consequences of incidence of lines in geometric configurations.
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
showed that the Desargues configuration played a special role. Further work was done by Ruth Moufang and her students. The concepts have been one of the motivators of incidence geometry. When parallel lines are taken as primary, synthesis produces
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is i ...
. Though Euclidean geometry is both an affine and
metric geometry In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
, in general
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
s may be missing a metric. The extra flexibility thus afforded makes affine geometry appropriate for the study of
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
, as discussed in the history of affine geometry. In 1955 Herbert Busemann and Paul J. Kelley sounded a nostalgic note for synthetic geometry: :Although reluctantly, geometers must admit that the beauty of synthetic geometry has lost its appeal for the new generation. The reasons are clear: not so long ago synthetic geometry was the only field in which the reasoning proceeded strictly from axioms, whereas this appeal — so fundamental to many mathematically interested people — is now made by many other fields. Herbert Busemann and Paul J. Kelly (1953) ''Projective Geometry and Projective Metrics'', Preface, page v,
Academic Press Academic Press (AP) is an academic book publisher founded in 1941. It launched a British division in the 1950s. Academic Press was acquired by Harcourt, Brace & World in 1969. Reed Elsevier said in 2000 it would buy Harcourt, a deal complete ...
For example, college studies now include
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
,
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, and
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
where the subject is developed from first principles, and propositions are deduced by
elementary proof In mathematics, an elementary proof is a mathematical proof that only uses basic techniques. More specifically, the term is used in number theory to refer to proofs that make no use of complex analysis. Historically, it was once thought that certain ...
s. Expecting to replace synthetic with
analytic geometry In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineering, and als ...
leads to loss of geometric content. Today's student of geometry has axioms other than Euclid's available: see
Hilbert's axioms Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book ''Grundlagen der Geometrie'' (tr. ''The Foundations of Geometry'') as the foundation for a modern treatment of Euclidean geometry. Other well-known modern ax ...
and Tarski's axioms. Ernst Kötter published a (German) report in 1901 on ''"The development of synthetic geometry from Monge to Staudt (1847)"''; (2012 Reprint as )


Proofs using synthetic geometry

Synthetic proofs of geometric theorems make use of auxiliary constructs (such as helping lines) and concepts such as equality of sides or angles and similarity and congruence of triangles. Examples of such proofs can be found in the articles Butterfly theorem, Angle bisector theorem, Apollonius' theorem, British flag theorem, Ceva's theorem, Equal incircles theorem, Geometric mean theorem, Heron's formula, Isosceles triangle theorem,
Law of cosines In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides , , and , opposite respective angles , , and (see ...
, and others that are linked to here.


Computational synthetic geometry

In conjunction with computational geometry, a computational synthetic geometry has been founded, having close connection, for example, with
matroid In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms ...
theory. Synthetic differential geometry is an application of
topos In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally, on a site). Topoi behave much like the category of sets and possess a notio ...
theory to the foundations of
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
theory.


See also

*
Foundations of geometry Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometry, non-Euclidean geometries. These are fundamental to the study and of hist ...
* Incidence geometry * Synthetic differential geometry


Notes


References

* * * Halsted, G. B. (1896
Elementary Synthetic Geometry
via Internet Archive * Halsted, George Bruce (1906
Synthetic Projective Geometry
via
Internet Archive The Internet Archive is an American 501(c)(3) organization, non-profit organization founded in 1996 by Brewster Kahle that runs a digital library website, archive.org. It provides free access to collections of digitized media including web ...
. * Hilbert & Cohn-Vossen, ''Geometry and the imagination''. * * * {{Authority control Fields of geometry